national**grid**

2011 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site

Villages of Hempstead & Garden City Nassau County, New York

Prepared for:

National Grid 175 East Old Country Road Hicksville, New York 11801

Prepared by:

URS Corporation - New York 77 Goodell Street Buffalo, New York 14203

URS

May 2012

2011 ANNUAL GROUNDWATER SAMPLING AND NAPL MONITORING/RECOVERY REPORT

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

URS Corporation 77 Goodell Street Buffalo, New York 14203

May 2012

TABLE OF CONTENTS

			Page No.						
EXEC	UTIVE	SUMMARY	1						
1.0	INTRO	ODUCTION	1-1						
2.0	FIELD	O ACTIVITIES	2-1						
	2.1	Groundwater Depth and NAPL Thickness Measurements	2-1						
	2.2	NAPL Recovery							
	2.3	Groundwater Sampling							
	2.4	Soil Vapor Sampling	2-2						
	2.5	Groundwater Treatment System Operation	2-3						
3.0	RESU	LTS	3-3						
	3.1	Dissolved-Phase Plume	3-3						
	3.2	Potentiometric Heads and NAPL Thickness	3-5						
	3.3	Groundwater Analytical Results	3-6						
	3.4	NAPL Recovery Volumes	3-6						
	3.5	Groundwater Treatment System Performance	3-6						
4.0	SUMN	MARY	4-10						
Refere	nces		4-1						
		TABLES (Following Text)							
Table 1	1A	Summary of 2011 Field Activities: Water Level Measurements, NAPL Measurements, and Water Quality Sampling	Thickness						
Table 1	1B	Summary of 2011 Field Activities: NAPL Product Recovery							
Table 2	2	Groundwater and NAPL Measurements							
Table 3		NAPL Recovery							
Table 4		Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds							
Table 5	5	Groundwater Treatment Performance Monitoring							
Table 6	5	Groundwater Treatment Headspace Monitoring, System No. 1							
Table 7	7	Groundwater Treatment Headspace Monitoring, System No. 2							

FIGURES

(Following Tables)

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Soil Remediation and Groundwater Treatment Locations
Figure 4	Extent of Dissolved-Phase Plume and Groundwater Analytical Results
Figure 5	Potentiometric Surface Map for Shallow Groundwater, December 13, 2011
Figure 6	Potentiometric Surface Map for Intermediate Groundwater, December 13, 2011
Figure 7	Potentiometric Surface Map for Deep Groundwater, December 13, 2011
Figure 8	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Fourth Quarter 2011
Figure 9	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Third Quarter 2011
Figure 10	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Second Quarter 2011
Figure 11	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, First Quarter 2011
Figure 12A	Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot
Figure 12B	Well HIMW-01I NAPL Thickness and Cumulative Recovery Plot
Figure 12C	Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot
Figure 12D	Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot
Figure 12E	Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot
Figure 12F	Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot
Figure 12G	Well HIMW-11I NAPL Thickness and Cumulative Recovery Plot
Figure 12H	Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot
Figure 12I	Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot
Figure 12J	Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot
Figure 12K	Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot
Figure 12L	Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot
Figure 12M	Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot
Figure 12N	Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot
Figure 12O	Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot
Figure 12P	Well PZ-08 NAPL Thickness and Cumulative Recovery Plot
Figure 12Q	Well IPR-02 NAPL Thickness and Cumulative Recovery Plot

Figure 12R	Well IPR-05 NAPL Thickness and Cumulative Recovery Plot
Figure 12S	Well IPR-06 NAPL Thickness and Cumulative Recovery Plot
Figure 12T	Well IPR-07 NAPL Thickness and Cumulative Recovery Plot
Figure 12U	Well IPR-09 NAPL Thickness and Cumulative Recovery Plot
Figure 12V	Well IPR-12A NAPL Thickness and Cumulative Recovery Plot
Figure 12W	Well IPR-15 NAPL Thickness and Cumulative Recovery Plot
Figure 12X	Well IPR-16 NAPL Thickness and Cumulative Recovery Plot
Figure 12Y	Well IPR-17 NAPL Thickness and Cumulative Recovery Plot
Figure 12Z	Well IPR-18 NAPL Thickness and Cumulative Recovery Plot
Figure 12AA	Well IPR-20 NAPL Thickness and Cumulative Recovery Plot
Figure 12AB	Well IPR-21 NAPL Thickness and Cumulative Recovery Plot
Figure 12AC	Well IPR-22 NAPL Thickness and Cumulative Recovery Plot
Figure 12AD	Well IPR-23 NAPL Thickness and Cumulative Recovery Plot
Figure 12AE	Well IPR-24 NAPL Thickness and Cumulative Recovery Plot
Figure 12AF	Well IPR-25 NAPL Thickness and Cumulative Recovery Plot
Figure 12AG	Well IPR-26 NAPL Thickness and Cumulative Recovery Plot
Figure 12AH	Well IPR-27 NAPL Thickness and Cumulative Recovery Plot
Figure 12AI	Well IPR-28 NAPL Thickness and Cumulative Recovery Plot
Figure 12AJ	Well IPR-29 NAPL Thickness and Cumulative Recovery Plot
Figure 12AK	Well IPR-30 NAPL Thickness and Cumulative Recovery Plot

APPENDICES

(Following Figures)

Appendix A	Data Usability Summary Report
Appendix B	Soil Vapor Sampling Data (GEI Consultants)
Appendix C	Oxygen System Operation & Maintenance Measurements

ACRONYMS AND ABBREVIATIONS

amsl above mean sea level

BTEX benzene, toluene, ethylbenzene, xylenes

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DUSR data usability summary report

ft foot (feet)

HIMW Hempstead Intersection (Street) monitoring well

IPR Intersection (Street) product recovery

LNAPL light non-aqueous phase liquid

MGP manufactured gas plant

MP monitoring points

NAPL non-aqueous phase liquid

ND not detected

NI not included

NM not measured

NYSDEC New York State Department of Environmental Conservation

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PZ piezometer

QC quality control

RI remedial investigation

Sh sheen

TOR top of riser

URS URS Corporation

USEPA United States Environmental Protection Agency

μg/L micrograms per liter

EXECUTIVE SUMMARY

This annual report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling and recovery of non-aqueous phase liquid (NAPL) at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site in 2011.

Groundwater monitoring and sampling was conducted on January 26 – February 8, May 23 – June 3, September 20 – 29 and December 14 – 28, 2011. This included measuring the depth to groundwater and NAPL thickness in 59 wells. Groundwater samples were collected from 25 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

NAPL monitoring and recovery was conducted during 13 events between January to July. The NAPL recovery program was concluded after the monitoring and recovery event on July 26, 2011, because of the site wide In-Situ Solidification program. Thirty-one (31) NAPL recovery wells were abandoned within the Intersection Street site property boundaries on November 10-11, 2011 in accordance with the well abandonment plan approved by NYSDEC.

Dissolved oxygen measurements were taken by Fenley & Nicol Environmental during the fourth quarter of 2011 for System No. 1 on October 14, October 27, November 10, November 22, December 9, and December 23, a total of 6 events and were taken for System No. 2 on October 13, October 26, November 9, November 23, December 8, and December 22, for a total of 6 events.

The following results were obtained from the groundwater sampling and NAPL monitoring/recovery events:

- The general direction of groundwater flow in shallow, intermediate, and deep water-bearing zones was south at an average gradient that ranged from approximately 0.002-0.003 feet per feet (ft/ft).
- The dissolved-phase plume extended approximately 3,600 ft south of the site boundary.

URS CORPORATION

- Dense non-aqueous phase liquid (DNAPL) was detected in 26 wells during the first quarter, 25 wells during the second quarter, 24 wells during the third quarter, and 14 existing wells during the fourth quarter of 2011, . The well locations were within the site and a parking lot immediately south of the site.
- Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. The volume of NAPL recovered from the on- site and off-site wells in 2011 ranged from 24 to 50 gallons. NAPL was not recovered from the site wells during the fourth quarter of 2011 because the In Situ Solidification (ISS) construction phase was starting. NAPL recovery wells on the main former MGP site were decommissioned in November 2012 for the ISS treatment program. Approximately50 gallons were recovered during the first quarter, 65 gallons were recovered during the second quarter, and 24 gallons of NAPL were recovered during the third quarter.
- Based on a comparison between the third quarter 2011 data and the previous data, the
 concentrations of total BTEX and total PAHs remained stable in most site monitoring
 wells, although there is evidence of decreased concentrations certain monitoring
 wells that are located directly downgradient of oxygen delivery Systems No. 1 and
 No. 2.
- The first of two oxygen delivery systems (System No. 2) was brought on line in October 2010 and has successfully promoted increased aerobic conditions in the aquifer near the system during the fourth quarter of 2011.
- The second of two oxygen delivery systems (System No. 1) was brought on line in April 2011 and has successfully promoted increased aerobic conditions in the aquifer near the system during the fourth quarter of 2011.
- A pressure build-up condition was observed in several monitoring points for both oxygenation systems, and has been addressed by reducing the duration of oxygen delivery to specific wells or banks and/or temporarily deactivating certain well banks while still maintaining dissolved oxygen concentrations suitable for aerobic biodegradation.

- Bimonthly headspace and water quality parameters were collected from the monitoring points for Systems No. 1 and No. 2 by Fenley & Nicol. During the fourth quarter, Fenley & Nicol monitored System No. 1 and No. 2 during six events. During the third quarter, Fenley & Nicol monitored System No. 1 and No. 2 during five events. During the second quarter, Fenley & Nicol monitored System No. 1 three times, after it was brought on-line, and System No. 2 six times. During the first quarter, Fenley & Nicol monitored System No. 2 during five events.
- Starting in the third quarter, URS measured weekly headspace and water quality parameters for the monitoring points for Systems No. 1 and No. 2 to provide additional data to assess the observed pressure in monitoring wells. During the third quarter, URS monitored System No. 1 four times and System No. 2 five times. During the fourth quarter, URS monitored System No. 1 twelve times and System No. 2 eleven times.

1.0 INTRODUCTION

This annual report summarizes potentiometric head measurements, NAPL thickness measurements, and groundwater quality sampling performed during the first, second, third, and fourth quarters of 2011 at the Hempstead Intersection Street Former MGP Site (refer to Figures 1 and 2). The results of NAPL recovery activities conducted throughout 2011 are also presented.

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports have been issued for first, second, and third quarter activities performed in 2011 (URS 2011a, 2011b, 2011c). Results of the fourth quarter activities have not been presented in a separate quarterly report; instead, they are included in this annual report. Separate reports were issued for the first, second, and third quarter activities performed in 2010, and an annual report was issued that encompassed all four quarters of 2010 (URS 2010b, 2010c, 2010d, 2010e). Additionally, separate reports were issued for the first, second, and third quarter activities performed in 2009, and an annual report was issued that encompassed all four quarters of 2009 (URS 2009c, 2009d, 2009e, 2010a). Separate reports were also issued for the first, second, and third quarter activities performed in 2008, and an annual report was issued that encompassed all four quarters of 2008 (URS 2008b, 2008c, 2009a, 2009b). Also, a report was issued for second and third quarter activities performed in 2007 and an annual report was issued that encompassed all three quarters of 2007 (URS 2007, 2008a).

URS Corporation (URS) performed the following activities in 2011:

- Measured the depth to groundwater and NAPL thickness in all accessible on site and
 off site monitoring wells (on January 26 & 28, May 20, September 20, and December
 13, 2011).
- Collected groundwater samples from monitoring wells for laboratory analysis. There were 16 wells sampled on January 26 February 8; 25 wells sampled on May 23 June 3; 22 wells sampled on September 20 29; and 25 wells sampled on December 14 28, 2011).

- Recovered NAPL from accessible monitoring wells and piezometers for a total of 13 events in 2011 (January 4, January 20-21, February 10, February 22-23, March 15, March 28-29, April 15, May 2-3, May 20, June 7-8, June 23, July 7-8, and July 26).
- Monitored groundwater treatment System No. 1 and System No. 2 on a weekly basiss starting in the third quarter. Measured groundwater levels with an interface probe and headspace gases with a photoionization detector (PID) and a multi-gas portable monitor for VOCs, oxygen, carbon dioxide, and methane. Groundwater quality parameters were also measured with a multi-parameter water quality meter for pH, conductivity, dissolved oxygen, ORP, and temperature.
- Directed the closure of 31 product recovery wells within the Intersection Street property boundary by filling the well with sand. The abandoned wells were located in the footprint of the planned in-situ solidification area.

Fenley & Nicol Environmental, Inc. (F&N) also performed water level measurements, well headspace monitoring with a photoionization detector (PID), and dissolved oxygen measurements with a dissolved oxygen meter to monitor the performance of the groundwater treatment systems for System No. 1 and System No. 2. Dissolved oxygen measurements were taken during the fourth quarter of 2011 for System No. 1 on October 14, October 27, November 10, November 22, December 9, and December 23, a total of 6 events; and were taken for System No. 2 on October 13, October 26, November 9, November 23, December 8, and December 22, for a total of 6 events.

GEI Consultants performed soil gas sampling on on September 28, 2011.

2.0 FIELD ACTIVITIES

The field activities performed by URS during the fourth quarter of 2011 are summarized below.

- Measurement of the depth to groundwater and NAPL thickness in 59 monitoring wells.
- Collection of groundwater samples from 25 monitoring wells.
- NAPL recovery was not performed during the fourth quarter.
- Groundwater monitoring for treatment Systems No. 1 and No. 2 by measuring water levels, headspace gases with a photo- ionization detector (PID) and a multi-gas meter, and groundwater quality parameters with a YSI water quality meter.

Monitoring wells and piezometers used for these activities are listed in Table 1A.

Fenley & Nicol performed water level measurement, well headspace monitoring with a PID, and dissolved oxygen measurements with a dissolved oxygen meter to monitor the performance of the groundwater treatment Systems No. 1 and No. 2 twice monthly.

2.1 Groundwater Depth and NAPL Thickness Measurements

Depths to groundwater and NAPL thickness measurements for 2011 are listed in Table 2. An electronic oil/water interface probe was used to measure the depth to groundwater and check for the presence of LNAPL. DNAPL thickness was measured using a weighted cotton string that absorbs oil.

2.2 NAPL Recovery

NAPL recovery ended in the third quarter of 2011 after the July 26, 2011 event. The NAPL is a dense non-aqueous phase liquid (DNAPL) located at the bottom of the wells. NAPL recovery was conducted using the appropriate personal protective equipment. First, all accessible wells included in the recovery program were gauged using an oil/water interface probe to determine the depth to water and the depth to and thickness of light non-aqueous phase liquid

(LNAPL) at the top of the water column. Wells were then gauged with a weighted cotton string to measure the DNAPL thickness. The DNAPL was recovered using either a Waterra inertial lift pump, or a dedicated bailer if the DNAPL was particularly viscous. Water and product that were recovered were stored in 55-gallon steel drums for subsequent offsite disposal.

The quantity of the recovered DNAPL was estimated as the volume of NAPL contained inside the well prior to pumping, based on the cross sectional area of the well screen multiplied by the measured NAPL thickness.

NAPL was recovered during 13 events from January to July 2011 (Table 3).

2.3 Groundwater Sampling

Low-flow groundwater sampling methods were used, which consisted of purging groundwater at a rate of between 100 and 250 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e. \pm 10 percent] over a 15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-custody procedures to H2M laboratories, Inc. for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260B) and PAHs (USEPA Method 8270C). Non-hazardous purge water is stored in an onsite storage tank for subsequent offsite disposa.

There were 25 monitoring wells sampled during the December 14 - 28 groundwater sampling event.

2.4 Soil Vapor Sampling

Soil vapor sampling was conducted by GEI consultants in the third quarter of 2011. Sampling occurred at six vapor points (HIVP-16, HIVP-17, HIVP-18, HIVP-19, HIVP-20, and HIVP-21) within the community on September 28, 2011 (see Figure 2 for soil vapor point locations).

2.5 Groundwater Treatment System Operation

National Grid installed two oxygen delivery systems to treat groundwater in the downgradient plume. The first system that was completed, designated "System No. 2", extends from Mirschel Park in the east to Kensington Court in the west and began operation in October 2010. The second system that was completed, designated "System No. 1", is located along Smith Street, a portion of the Long Island Railroad Right of Way, and a portion of Hilton Avenue and started operating in April 2011. Figure 3 shows the locations of the two systems.

The performance of System No. 1 and System No. 2 was monitored through the measurement of water levels, headspace gas, and water quality parameters in the groundwater approximately twice per month by Fenley & Nicol (see Table 5) and weekly starting in the third quarter by URS (see Tables 6 and 7). Groundwater levels were measured by URS with an interface probe and headspace with a photoionization detector (PID) and a multi-gas portable monitor for VOCs, oxygen, carbon dioxide, and methane. Groundwater quality parameters were measured with a multi-parameter water quality meter for pH, conductivity, dissolved oxygen, ORP, and temperature. Fenley & Nicol also performed water level measurement, well headspace monitoring with a photoionization detector (PID), and dissolved oxygen measurements with a dissolved oxygen meter.

The full system data is included in Appendix B and shows the systems are effective in increasing the dissolved oxygen levels to augment biodegradation of dissolved phase MGP compounds in groundwater.

3.0 RESULTS

3.1 Dissolved-Phase Plume

The extent of the dissolved-phase groundwater plume boundary is shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than $100~\mu g/L$, extends approximately 3,600 feet south of the site boundary. Based on comparison with previous quarterly groundwater monitoring data, the concentrations of total BTEX or PAHs in groundwater have remained stable, although there is evidence of decreased concentrations in certain monitoring wells that are located directly

downgradient of oxygen delivery Systems No. 1 and No. 2, specifically HIMW-13I, HIMW-20I, and HIMW-25 and to a lesser extent, HIMW-23 and HIMW-24.

For HIMW-13I, BTEX readings decreased from 205 μ g/L in the first quarter, 142 μ g/L in the second quarter, 96 μ g/L in the third quarter, to 27 μ g/L in the fourth quarter. PAH results were 128 μ g/L in the first quarter and decreasing to 67 μ g/L in the second quarter and staying steady at 75 and 62 μ g/L in the third and fourth quarter, respectively. This well is approximately 610 feet downgradient from System No. 2.

Groundwater sampling results for HIMW-20I showed BTEX readings of 186 and 198 μ g/L during the first and second quarters decreasing to 10 and 1 μ g/L for the third and fourth quarters, respectively. PAH results demonstrated a similar decrease from 1,144 μ g/L in the first quarter to 530 μ g/L in the second quarter, to 2 μ g/L in the third quarter and finally not detected in the fourth quarter. This monitoring well location is approximately 30 feet downgradient from System No. 1.

Monitoring well HIMW-25 was installed in the first quarter and was first sampled in the second, third, and fourth quarters. This sampling showed BTEX results of 552 μ g/L, followed by 109 μ g/L in the third quarter, and 10 μ g/L in the fourth quarter. PAH analysis returned a result of 573 μ g/L in the second quarter, 109 μ g/L in the third quarter, and not detected in the fourth quarter. This monitoring well location is approximately 125 feet downgradient from System No. 1.

Monitoring wells HIMW-23 and HIMW-24 were also installed in the first quarter and have shown decreases in BTEX and PAH concentrations. For HIMW-23, BTEX concentrations were 43 μ g/L in the second quarter and were 1 μ g/L in the fourth quarter while the PAH concentrations decreased from 11 μ g/L to not detected in the same period. This location is approximately 70 feet downgradient from System No. 2. Likewise for HIMW-24, BTEX concentrations were 870 μ g/L in the second quarter and were 671 μ g/L in the fourth quarter while the PAH concentrations decreased from 1,020 μ g/L to 792 μ g/L in the same period. This location is approximately 380 feet downgradient from System No. 1.

In December 2011, the concentrations of total BTEX or total PAHs in the furthest downgradient well pair (HIMW-15I/D) ranged from "not detected" (deep well, HIMW-15D) to 34 μ g/L (intermediate well, HIMW-15I). The concentrations of total BTEX or total PAHs in wells located between the site and the HIMW-15 cluster varied from "not detected" to 2,648 μ g/L (intermediate well, HIMW-5I).

3.2 Potentiometric Heads and NAPL Thickness

Potentiometric heads and NAPL thickness measurements for 2011 are presented in Table 2. Potentiometric surface maps for shallow, intermediate and deep groundwater zones were developed using this data and are shown in Figures 5, 6, and 7, respectively. The data indicates that the direction of groundwater flow within the well field was south at an average gradient that ranged from approximately 0.002-0.003 ft/ft. Potentiometric surface maps for the first quarter, second quarter, and third quarter are provided in the previous quarterly reports (URS 2011a, 2011b, 2011c).

DNAPL was detected in 26 existing wells in the first quarter, 25 wells in the second quarter, 24 wells in the third quarter, and 14 of the wells during the fourth quarter 2011 (Table 3). Figures 8 through 11 illustrate the thickness of DNAPL that was measured for the fourth, third, second, and first quarters of 2011. All of the wells where DNAPL was identified are either on the site or within a parking lot that is immediately south of the site.

Figures 12A through 12AK provide cumulative NAPL recovery and NAPL thickness plots for the period of December 2003 to July 2011. All of the wells where DNAPL was identified are either on the site or within a parking lot that is immediately south of the site.

NAPL recovery activities were suspended after the July 26, 2011 event due to the planned start of the ISS remediation.

URS provided oversight for Fenley & Nicol to abandon 31 product recovery wells at the Hempstead site on November 10-11, 2011 (Table 1A). These wells will therefore be removed from future monitoring activities.

3.3 **Groundwater Analytical Results**

Groundwater analytical results are summarized in Table 4 and illustrated on Figures 4 and 8.

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B – Guidance for the Development of Data Usability Summary Reports, May 2010. An electronic copy of the DUSR is included as Appendix A. The review included a review of holding times; completeness of all required deliverables; quality control (QC) results (blanks, instrument tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported.

3.4 NAPL Recovery Volumes

Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. The volume of NAPL recovered from the on- site and off-site wells in 2011 ranged from 24 to 50 gallons. Approximately 50 gallons were recovered during the first quarter, 65 gallons were recovered during the second quarter, and 24 gallons of NAPL were recovered during the third quarter. NAPL recovery was not performed at the site during the fourth quarter of 2011.

3.5 Groundwater Treatment System Performance

System No. 1

The groundwater treatment System No. 1 started operation on April 27, 2011. Fenley & Nicol conduct bimonthly monitoring including measurement of water depth, dissolved oxygen concentration, and headspace vapors by photoionization detector monitoring. A summary of the data collected from the monitoring points is presented on Table 5.

Dissolved phase oxygen concentrations in the monitoring point (MP) wells installed adjacent to the delivery line (MP-1-1S through MP-1-4D) were all above 5 mg/L (showing sufficient oxygen concentrations to support bacterial growth), and ranged up to 44 mg/L in some cases, near the oxygen solubility saturation limits of 50 mg/L. The exception was MP-1-4S which showed oxygen saturation levels of between 0.78 and 5.6 mg/L related to reductions in oxygen flow in adjacent delivery wells, as discussed below. The MP wells located downgradient of the plume (MP-1-5 through MP-1-8) also showed sufficient oxygenation in the 5 mg/L to 27 mg/L range. There are lower oxygen levels in MP-1-7 which is downgradient of MP-1-4S and MP-1-4D. These levels are lower than their corresponding upgradient MP wells, as is expected with the biological process proceeding while groundwater flows downgradient.

During the third quarter, a pressure build up condition was also observed in the MP wells for System No. 1, primarily in the deep MP wells. To monitor the pressure in the MP wells, URS collected supplementary headspace data. A summary of the data collected during the fourth quarter is presented in Table 6.

The accumulation of oxygen in the headspace is likely due to reduction in oxygen demand (as a result of contaminant level reduction) and/or short circuiting in cases where oxygen delivery wells are located very close to monitoring points (e.g. MP-1-2S and MP-1-2D) because of access constraints. To address this, the oxygen delivery duration was reduced during the third quarter from 13 minutes per cycle to 3 minutes per cycle in banks 1, 3, and 5 (serving the deep wells in the western portion of the system), and to 1 minute per cycle in bank 11 serving the deep wells in the eastern portion of the system. Additionally, the deep wells OW-1-13D through OW-1-20D, located along the LIRR ROW, were temporarily deactivated. Because high headspace oxygen still was monitored in the western monitoring points (MP-1-1S, MP-1-1D, MP-1-2S, and MP-1-2D), banks 3 and 5 were shutdown completely on November 28, 2011. Additionally, due to elevated headspace oxygen in MP-1-4S and MP-1-4D, delivery wells OW-1-41S, OW-1-41D, OW-1-42S, OW-1-42D, OW-1-43, and OW-1-44, all located near the MP-1-4 monitoring point pair, were temporarily deactivated.

Table 6 shows that the adjustments made to the system operation have lowered the headspace oxygen concentration in the MP wells, except for the western MP locations (MP-1-1S, MP-1-1D, MP-1-2S, and MP-1-2D). The location of monitoring points was selected based on the

available areas outside of the travelled roadways, and based on drill rig accessibility. Accordingly, some monitoring points, such as MP-1-2S and MP-1-2D are located directly along the line of delivery wells and in some cases less than six feet from the nearest delivery well. Therefore, the headspace pressure condition observed in these wells may be related to the close proximity to the oxygenation delivery wells.

The performance of System No. 1 has been effective in raising the oxygen level sufficiently to support aerobic bacterial growth and associated hydrocarbon degradation. Due to the reductions in oxygen delivery discussed above to address headspace oxygen concentrations, the dissolved oxygen concentration during the forthr quarter were somewhat lower than earlier measurements. But for all the MP wells along the delivery line except for MP-1-4S and MP-1-4D the dissolved oxygen level was greater than 5 mg/L, providing a sufficiently aerobic environment. Oxygen concentrations for MP-1-4S and MP-1-4D decreased during this period, especially after delivery reduction instituted on November 28, 2011, but they were still aerobic. Delivery rate changes near these two wells will be adjusted during the first quarter of 2012 to increase dissolved oxygen concentrations in this area.

The downgradient MP wells (MP-1-5 through MP-1-8) also show aerobic conditions although the MP-1-7, downgradient of MP-1-4S and MP-1-4D is less aerobic than the other three as expected. Two new groundwater wells have been installed downgradient of this system to evaluate its performance. HIMW-25 which is closest to the system, shows significant reduction in total BTEX and total PAHs. BTEX and PAH concentrations have not decreased at the further downgradient HIMW-24 (located about halfway between System No. 1 and System No. 2). This indicates that the zone of oxygenated water has not yet reached well HIMW-24 which is located approximately 400 feet downgradient of the oxygen delivery line.

System No. 2

The groundwater treatment System No. 2 started operation on October 11, 2010. Fenley & Nicol conducts bimonthly monitoring including measurement of water depth, dissolved oxygen concentration, and headspace vapors by photoionization detector monitoring. A summary of the data collected by Fenley & Nicol from the monitoring points is presented on Table 5.

During the third quarter, to address elevated headspace oxygen concentrations and (in some cases) greater than atmospheric pressures in monitoring point headspaces, flow rates for each delivery line were adjusted such that the delivery pressure would not exceed by more than 1 psi the hydrostatic pressure at each delivery well screen depth and the delivery duration to banks D & E (which serve the center of the System No. 2 delivery line) was reduced from 13 minutes per cycle to 6 minutes per cycle.

To further monitor the presence of pressure in some of the MP wells, URS collected supplementary headspace data throughout this time period. A summary of the data collected is presented in Table 7. This table shows that the adjustments made to the system operation have lowered the oxygen concentration in the MP well headspace, but there was some pressure build up observed towards the end of the quarter in MP-2-4.

The performance of System No. 2 has been effective in raising the oxygen level sufficiently to support aerobic bacterial growth and attendant hydrocarbon degradation. Dissolved oxygen levels during the fourth quarter were lower than observed in earlier quarters, possibly due to the reductions in oxygen delivery rate. However, dissovlved oxygen concentration remain in the range of 7 to 30 mg/L, demonstrating that the system continues to provide the aerobic environment necessary to promote biodegradation of dissolved hydrocarbons. The two new groundwater wells installed downgradient of this system to evaluate its performance (HIMW-22 and HIMW-23) were measured at between ND and 1 μ g/L BTEX and total PAH concentrations, showing in the system is effective in reducing concentrations of dissolved hydrocarbons in this area.

4.0 SUMMARY

Following is a summary of the third quarter 2011 groundwater sampling and NAPL monitoring/recovery data presented in this report:

- The general direction of groundwater flow in shallow, intermediate, and deep water-bearing zones was south at an average gradient of 0.002-0.003 ft/ft.
- The dissolved-phase plume extended to approximately 3,600 feet south of the site boundary.
- 31 product recovery wells were closed in place within the Intersection Street property boundary by filling the well with sand. The abandoned wells were located in the footprint of the in-situ solidification of the delineated MGP free product plume.
- Dense non-aqueous phase liquid (DNAPL) was detected in 26 wells during the first quarter, 25 wells during the second quarter, 24 wells during the third quarter, and 14 existing wells during the fourth quarter of 2011. The wells were located on site or within a parking lot immediately south of the site.
- Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. The volume of NAPL recovered from the on- site and off-site wells in 2011 ranged from 24 to 50 gallons. Approximately 50 gallons were recovered during the first quarter, 65 gallons were recovered during the second quarter, and 24 gallons of NAPL were recovered during the third quarter. NAPL was not recovered from the site wells during the fourth quarter of 2011.
- Based on a comparison between the third quarter 2011 data and the previous data, the
 concentrations of total BTEX and total PAHs remained stable in most site monitoring
 wells, although there is evidence of decreased concentrations in certain monitoring
 wells that are located directly downgradient of oxygen delivery Systems No. 1 and
 No. 2.
- The first of two oxygen delivery systems (System No. 2), brought on line in October 2010, has successfully promoted increased aerobic conditions in the aquifer near the system.

- The second of two oxygen delivery systems (System No. 1), brought on line in April 2011, has successfully promoted increased aerobic conditions in the aquifer near the system.
- A pressure build-up condition was observed in several monitoring wells for both oxygenation systems. This condition has been monitored regularly by URS, and has been addressed in a step wise fashion by a combination of system operating changes such as reducing the duration of oxygen delivery to specific wells or banks and/or temporarily deactivating some well banks to help establish the appropriate delivery rates, and reduce the potential for pressure build up in monitoring wells while maintaining dissolved oxygen concentrations suitable for aerobic degradation. The data will continue to be evaluated in order to optimize system operation, and to determine the reason for the observed pressure build-up condition.
- Bimonthly headspace and water quality parameters were collected from the monitoring points for Systems No. 1 and No. 2 by Fenley & Nicol. During the first quarter, Fenley & Nicol monitored System No. 2 during five events. During the second quarter, Fenley & Nicol monitored System No. 1 three times, after it was brought on-line, and System No. 2 six times. During the third quarter, Fenley & Nicol monitored System No. 1 and No. 2 during five events. During the fourth quarter, Fenley & Nicol monitored System No. 1 and No. 2 during six events.
- Starting in the third quarter, URS measured weekly headspace and water quality parameters for the monitoring points for Systems No. 1 and No. 2 to provide additional data to assess the observed pressure in monitoring wells. During the third quarter, URS monitored System No. 1 four times and System No. 2 five times. During the fourth quarter, URS monitored System No. 1 twelve times and System No. 2 eleven times.

REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

- URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2010e. 2010 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2011a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2011 (January March 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. July.
- URS, 2011b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2011 (April June 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2011c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2011 (July- September 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.

TABLES

Table 1A

Summary of 2011 Field Activities (1), (2)

Water Level Measurements, NAPL Thickness Measurements, and Water Quality Sampling Hempstead Intersection Street Former MGP Site

	Farreth O		2044)4	Thind O		2011)	C		Marr 2011)	First O.	antan / Iana Ma	2044\ ³
Well ID	Water	uarter (Oct-D NAPL	Water	Water	uarter (Jul-Au NAPL	Water	Water	Quarter (Apr-I NAPL	Water	Water	arter (Jan-Ma NAPL	Water
HIMW-001S	Level	Thickness Abandoned	Quality	Level X	Thickness X	Quality	Level X	Thickness X	Quality	Level X	Thickness X	Quality
HIMW-0013		Abandoned		X	X		X	X		X	X	
HIMW-001D	V	Abandoned		V	V		V	V		V	V	
HIMW-002S HIMW-002I	X			X	X		X	X		X	X	
HIMW-002D	Х			Х	Х		Х	Х		Х	Х	
HIMW-003S HIMW-003I	X		X	X	X	X	X	X	X	X	X	
HIMW-003D	X		X	X	X		X	X	X	X	X	
HIMW-004S	Χ			Χ	Χ		Χ	Χ		X	Χ	
HIMW-004I HIMW-004D	X			X	X		X	X		X	X	
HIMW-005S	X		Х	X	X	Х	X	X	Х	X	X	Х
HIMW-005I	Х		Χ	Х	Х	Χ	Х	Х	Χ	X	Х	Χ
HIMW-005D HIMW-006S	Х	Abandoned	Х	X	X	Х	X	X	Х	X	X	Х
HIMW-0061		Abandoned		X	X		X	X		X	X	
HIMW-006D		Abandoned		Х	Х		Х	Х		Х	Х	
HIMW-007S HIMW-007I		Abandoned Abandoned		X	X		X	X		X	X	
HIMW-007D		Abandoned		Х	Х		Χ	Х		Χ	Х	
HIMW-008S	X		X	X	Х	X	Х	Х	X	X	Х	X
HIMW-008I HIMW-008D	X		X	X	X	X	X	X	X	X	X	X
HIMW-009S	Х			Х	Χ		Х	Х		Х	Χ	
HIMW-009I	X			X	Х		Χ	Х		Χ	Х	
HIMW-009D HIMW-010S	X			X	X		X	X		X	X	
HIMW-010I	X			Х	Х		Х	Х		X	X	
HIMW-010D	V	V		X	X		X	X		I		
HIMW-011S HIMW-011I	X	X		X	X		X	X		I		
HIMW-011D	Х	X		Х	Х		Х	Х		i	i	
HIMW-012S	X		X	X	X	X	X	X	X	X	X	X
HIMW-012I HIMW-012D	X		X	X	X	X	X	X	X	X	X	X
HIMW-013S	Х		Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	
HIMW-013I HIMW-013D	X		X	X	X	X	X	X	X	X	X	X
HIMW-014I	Х		Х	Х	Х	X	Х	Х	Х	Х	Х	X
HIMW-014D	Х		Χ	Х	Χ		Х	Х	Χ	Χ	Х	
HIMW-015I HIMW-015D	X		X	X	X	X	X	X	X	X	X	X
HIMW-016S	Х	Х		Х	Χ					Χ	Х	
HIMW-016I	X	X		X	X					X	X	
HIMW-017S HIMW-018S	Х	X Abandoned		X	X		Х	Х		X	X	
HIMW-018I		Abandoned		Х	Χ		Χ	Х		X	Χ	
HIMW-019S HIMW-019I		Abandoned Abandoned		X	X		X	X		X	X	
HIMW-020S	Х	. wandoned	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х
HIMW-020I	X	V	Х	Х	Х	Χ	Х	Х	Х	X	X	X
HIMW-21 HIMW-22	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	
HIMW-23	Χ		Χ	Χ	Χ	Χ	Χ	Х	Χ			
HIMW-24 HIMW-25	X		X	X	X	X	X	X	X			
PZ-02	~		,			Α			· ·			
PZ-03 PZ-08		Abandoned		Х	X		Х	X		I	1	
IPR-01		Abandoned		X	X		X	X		X	X	
IPR-02		Abandoned		Х	Х		Х	Х		Х	Х	
IPR-03		Abandoned		Х	Х		Х	Х		X	Х	
IPR-04		Abandoned		X	X		X	X		X	X	
IPR-05 IPR-06		Abandoned Abandoned		X	X		X	X		X	X	
IPR-07		Abandoned		X	X		X	X		X	X	
IPR-08		Abandoned		Х	Х		Х	Х		Х	Х	
IPR-09		Abandoned		Х	Х		Х	Х		Х	Х	
IPR-10		Abandoned		X	X		X	X		X	X	
IPR-11 IPR-12A		Abandoned Abandoned		X	X		X	X		X	X	
IPR-12A IPR-12B		Abandoned		X	X		X	X		I X	I	
IPR-13		Abandoned		X	X		X	X		X	X	
IPR-14	Х	Х		Х	Х		Х	Х	-	Х	Х	
IPR-15	X	X		Х	X		Х	X		X	X	_
IPR-16	X	X		X	X		X	X		X	X	
IPR-17 IPR-18	X	X		X	X		X	X		X	X	
IPR-16	^	^		^	^		^	^		^	^	
IPR-19D	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-20	Х	Х		Х	Х					Х	Х	
IPR-21	X	X		X	X		X	X		X	X	
IPR-22 IPR-23	X	X		X	X		X	X		X	X	
IPR-23 IPR-24	X	X		X	X		X	X		X	X	
IPR-25		Abandoned		X	X		X	X		I	ı	
IPR-26		Abandoned		Х	Х					Ī	ı	
IPR-27		Abandoned		X	X		X	X		X	X	
IPR-28 IPR-29	Х	Abandoned		X	X		X	X		X	X	
IPR-29 IPR-30	X	X		X	X		X	X		X	X	
IPR-31												
OSMW-01	Х	Х		Х	Х		Х	Х		I	I	
-				Х	X		X	X		1	I	
OSMW-02 OSMW-03	X	X		X	Х		Х	Х		Ī	1	

Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- 2 Blank field indicates that the activity was not performed.
- Field marked with "I" indicates that monitoring was attempted, but the well was temporarily inaccessible due to snow or on-site soil stockpile.
 - Wells were Abandoned on November 10-11, 2011.
- * IPR-19S is covered with cold patch and is inaccessible.

Table 1B

Summary of 2011 Field Activities (1), (2) NAPL Product Recovery

Hempstead Intersection Street Former MGP Site

	Third Qua	arter 2011	1		nd Quarte						arter 2011 ³	3	
Well ID	July 26,	July 7-8,	June 23,	June 7-8,		May 2-3,	Apr 15,	Mar 29,	Mar 15,	Feb 23,	Feb 10,	Jan 21,	Jan 4,
	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
HIMW-001S	V	X		X	X	X	V	X		X		X	V
HIMW-001I HIMW-001D	X	Х		X	Х	Х	Х	Х		X		Х	Х
HIMW-002S													
HIMW-002I HIMW-002D													
HIMW-002B													
HIMW-003I													
HIMW-003D HIMW-004S													
HIMW-004I													
HIMW-004D HIMW-005S													
HIMW-005I													
HIMW-005D													
HIMW-006S HIMW-006I	Х	X	Х	X	X	X	Х	X	Х	X	Х	X	
HIMW-006D		^		X	^			^				^	
HIMW-007S	Х	X	Х	Х	Х	X	Х	X	Х	X	Х	X	Х
HIMW-007I HIMW-007D		X		X		X		X		X X		X	
HIMW-008S										Х			
HIMW-008I													
HIMW-008D HIMW-009S													
HIMW-009I													
HIMW-009D													
HIMW-010S HIMW-010I													
HIMW-010D													
HIMW-011S		X		Х				X		 		1	
HIMW-011I HIMW-011D		X				Х		X		1		1	
HIMW-012S													
HIMW-012I HIMW-012D						-							
HIMW-013S													
HIMW-013I													
HIMW-013D HIMW-014I													
HIMW-014D													
HIMW-015I													
HIMW-015D HIMW-016S	X	X	<u> </u>			X		X		X	X	X	Х
HIMW-016I	X	X	<u> </u>			Х		X		X	X	X	X
HIMW-017S	Х		Х	X		Х	Х	Х		Χ		Х	
HIMW-018S HIMW-018I	Х	X		X		X		X		X		X	
HIMW-019S	Х	X	1	X		X		X		X		X	
HIMW-019I		Х		Х		Х		Х		Х		Х	
HIMW-020S HIMW-020I						-							
HIMW-21	Х	Х	Х	Х				Х		Х	Х	Х	
HIMW-22													
HIMW-23 HIMW-24						-							
HIMW-25													
PZ-02													
PZ-03 PZ-08	Х	Х	Х	X	X	Х	X	Х	X	X		Х	X
IPR-01	, ·	Х		Х		Х		Х		Χ		Х	
IPR-02 IPR-03		X	Х	X	Х	X	Х	X		I X		X	
IPR-03 IPR-04		X		X		X		X		X		X	
IPR-05		Х						I		ı		Х	
IPR-06 IPR-07	Х	X	Х	X	Х	X	Х	X	Х	X		X	Х
IPR-08		X		X		X		X		X		X	
IPR-09		Х		Х		Х	Х	Х	-	Χ		Х	
IPR-10 IPR-11		X	 	X		X		X		X		X	
IPR-12A		Х		Х		Х		Х		X		Х	
IPR-12B		X		X		X		X		I X		I	
IPR-13 IPR-14		X		X		X		X		X		X	
IPR-15		Х		Χ		Х		Х		Χ		Х	
IPR-16		X	X	X		X	X	X	Х	X		X	
IPR-17 IPR-18		X	Х	X	Х	X	Х	X		X		X	
IPR-19S													
IPR-19D IPR-20		X		X		X	_	X		X		I	
IPR-20 IPR-21	X	X	Х	X	Х	X	X	X		X		X	X
IPR-22	X	X	X	Х	X	Х	-	Х	Х	Χ	Х	Х	-
IPR-23	V	X		X		X		X		X		I	
IPR-24 IPR-25	X	X	Х	X	Х	X	X	X	Х	X		X	X
IPR-26		Х				Х	Х	Х	-			I	
IPR-27	Х	X	X	Х	X	X	Х	X		X	Х	X	Х
IPR-28 IPR-29	Х	X	X	X	X	X	X	X	Х	X	X	X	
IPR-30	X	Х		X		X	X	Х		X		i	Х
OSMW-01		X						X	-	I		I	-
OSMW-02 OSMW-03		X		X				Х		<u> </u>			
Notes:					ı	E	l .	1			1		

Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- 2 Blank field indicates that the activity was not performed.
- Field marked with "I" indicates that monitoring was attempted, but the well was temporarily inaccessible due to snow or on-site soil stockpile.
- * IPR-19S is covered with cold patch and is inaccessible. HIMW-001D riser is damaged and is unusable.

Table 2 Groundwater and NAPL Measurements Fourth Quarter 2011 Hempstead Intersection Street Former MGP Site

		Elevation	Donth to	Donth to	Donth to	Well	Thickness	Thickness	Corrected
Well ID	Date	of TOR	Depth to LNAPL	Depth to Water	Depth to DNAPL	Depth	of LNAPL	of DNAPL	Potentiometric
Well IB	Date								Head (1)
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-01S ²	NM	71.61	NM	NM	NM	CIP	NM	NM	NM
HIMW-01I ²	NM	71.68	NM	NM	NM	CIP	NM	NM	NM
HIMW-01D ²	NM	71.95	NM	NM	NM	CIP	NM	NM	NM
HIMW-02S	12/13/2011	73.82	ND	23.88	ND	41.6	0	0	49.94
HIMW-02I	12/13/2011	78.87	ND	23.94	ND	91.5	0	0	54.93
HIMW-02D	12/13/2011	74.13	ND	24.12	ND	117.3	0	0	50.01
HIMW-03S	12/13/2011	65.00	ND	15.28	ND	34.7	0	0	49.72
HIMW-03I	12/13/2011	64.94	ND	15.38	ND	86.9	0	0	49.56
HIMW-03D	12/13/2011	65.26	ND	16.09	ND	145.3	0	0	49.17
HIMW-04S	12/13/2011	72.74	ND	23.76	ND	41.6	0	0	48.98
HIMW-04I	12/13/2011	72.78	ND	23.86	ND	90.5	0	0	48.92
HIMW-04D	12/13/2011	72.65	ND	24.28	ND	180.5	0	0	48.37
HIMW-05S	12/13/2011	67.19	ND	18.09	ND	39.1	0	~	49.10
HIMW-05I	12/13/2011	67.22	ND	18.04	ND	92.3	0	0	49.18
HIMW-05D	12/13/2011	67.22	ND	18.31	ND	139.0	0	0	48.91
HIMW-06S ²	NM	68.25	NM	NM	NM	CIP	NM	NM	NM
	NM	67.88	NM	NM	NM	CIP	NM	NM	NM
HIMW-06D ²	NM	67.77	NM	NM	NM	CIP	NM	NM	NM
HIMW-07S ²	NM	70.47	NM	NM	NM	CIP	NM	NM	NM
HIMW-07I ²	NM	70.10	NM	NM	NM	CIP	NM	NM	NM
HIMW-07D ²	NM	70.40	NM	NM	NM	CIP	NM	NM	NM
HIMW-08S	12/13/2011	65.04	ND	16.46	ND	37.1	0	0	48.58
HIMW-08I	12/13/2011	65.14	ND	16.62	ND	75.1	0	0	48.52
HIMW-08D	12/13/2011	64.93	ND	16.42	ND	114.8	0	0	48.51
HIMW-09S	12/13/2011	70.03	ND	20.88	ND	39.6	0	0	49.15
HIMW-09I	12/13/2011	69.93	ND	20.82	ND	80.5	0	0	49.11
HIMW-09D HIMW-10S	12/13/2011 12/13/2011	69.96 71.60	ND ND	20.93 21.42	ND ND	122.8 39.1	0	0	49.03 50.18
HIMW-103	12/13/2011		ND ND		ND	91.4	0	0	
2		71.47		21.09					50.38
HIMW-10D ³ HIMW-11S	NM	71.44	NM ND	NM 21.80	NM ND	136.0 41.6	NM 0	NM 0	NM 49.82
HIMW-11I	12/13/2011 12/13/2011	71.62 71.43	ND ND	21.71	ND ND	94.5	0	0	49.62
HIMW-11D	12/13/2011	71.43	ND ND	21.71	ND ND	123.6	0	0	49.72
HIMW-11B	12/13/2011	61.58	ND	14.23	ND	33.5	0	0	49.70
HIMW-12I		61.59		14.23	ND ND	75.0	0	0	47.38
HIMW-12D	12/13/2011 12/13/2011	61.82	ND ND	15.75	ND ND	128.5	0	0	46.07
HIMW-13S	12/13/2011	72.83	ND ND	27.73	ND ND	48.9	0	0	45.10
HIMW-13I	12/13/2011	72.60	ND ND	27.73	ND	82.6	0	0	45.10
HIMW-13D	12/13/2011	72.53	ND	27.51	ND	122.5	0	0	45.03
HIMW-14I	12/13/2011	71.71	ND	26.75	ND	96.9	0	0	44.96
HIMW-14D	12/13/2011	71.71	ND	28.69	ND	152.6	0	0	42.90
HIMW-15I	12/13/2011	64.18	ND ND	22.58	ND ND	93.1	0	0	42.90
HIMW-15D	12/13/2011	63.96	ND	23.85	ND	155.0	0	0	40.11
HIMW-16S	12/13/2011	67.45	ND	17.78	28.91	34.4	0	5.50	49.67
					77.16				
HIMW-16I HIMW-17S	12/13/2011 12/13/2011	67.50 65.96	ND ND	17.33 17.06	35.00	82.7 36.7	0	5.50 1.70	50.17 48.90
HIMW-18S ²	NM	69.76	NM	NM	35.00 NM	CIP	NM	NM	46.90 NM
HIMW-181 ²	NM	69.70	NM	NM	NM	CIP	NM	NM	NM
HIMW-19S	NM	70.95	NM	NM	NM	CIP	NM	NM	NM
HIMW-191 ²									
	NM	71.27	NM	NM	NM	CIP	NM	NM	NM 49.01
HIMW-20S HIMW-20I	12/13/2011 12/13/2011	70.43 70.30	ND ND	22.42 22.28	ND ND	35.0 73.0	0	0	48.01 48.02
i ilivivv-ZUI	12/13/2011	70.30	טאו	22.28	טאו	13.0	U	U	40.02

Table 2 Groundwater and NAPL Measurements Fourth Quarter 2011 Hempstead Intersection Street Former MGP Site

		Elevation	Depth to	Depth to	Depth to	Well	Thickness	Thickness	Corrected
Well ID	Date	of TOR	LNAPL	Water	DNAPL	Depth	of LNAPL	of DNAPL	Potentiometric
***************************************	Date							_	Head (1)
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-21	12/13/2011	NM	ND	16.72	45.30	45.3	0	2.0	NM
HIMW-22	12/13/2011	NM	NM	27.53	ND	65.0	0	0	NM
HIMW-23	12/13/2011	NM	NM	27.66	ND	77.0	0	0	NM
HIMW-24	12/13/2011	NM	NM	12.03	ND	56.0	0	0	NM
HIMW-25	12/13/2011	NM	NM	14.37	ND	53.0	0	0	NM
PZ-02	NM	72.96	NM	NM	NM	35.3	NM	NM	NM
PZ-03	NM	64.58	NM	NM	NM	29.5	NM	NM	NM
PZ-08 ²	NM	70.51	NM	NM	NM	CIP	NM	NM	NM
IPR-01 ²	NM	70.30	NM	NM	NM	CIP	NM	NM	NM
IPR-02 ²	NM	68.84	NM	NM	NM	CIP	NM	NM	NM
IPR-03 ²	NM	69.16	NM	NM	NM	CIP	NM	NM	NM
IPR-04 ²	NM	69.23	NM	NM	NM	CIP	NM	NM	NM
IPR-05 ²	NM	70.39	NM	NM	NM	CIP	NM	NM	NM
IPR-06 ²	NM	70.79	NM	NM	NM	CIP	NM	NM	NM
IPR-07 ²	NM	69.73	NM	NM	NM	CIP	NM	NM	NM
IPR-08 ²	NM	70.51	NM	NM	NM	CIP	NM	NM	NM
IPR-09 ²	NM	70.00	NM	NM	NM	CIP	NM	NM	NM
IPR-10 ²	NM	70.80	NM	NM	NM	CIP	NM	NM	NM
IPR-11 ²	NM	68.29	NM	NM	NM	CIP	NM	NM	NM
IPR-12A ²	NM	70.14	NM	NM	NM	CIP	NM	NM	NM
IPR-12B ²	NM	69.56	NM	NM	NM	CIP	NM	NM	NM
IPR-13 ²	NM	70.77	NM	NM	NM	CIP	NM	NM	NM
IPR-14	12/13/2011	66.93	ND	17.61	ND	44.4	0	0	49.32
IPR-15	12/13/2011	67.93	ND	18.56	ND	44.4	0	0	49.37
IPR-16	12/13/2011	69.49	ND	20.04	47.5	49.1	0	1.55	49.45
IPR-17	12/13/2011	70.60	ND	21.08	52.8	54.1	0	1.32	49.52
IPR-18	12/13/2011	66.87	ND	17.68	49.9	50.0	0	0.1	49.19
IPR-19S	NM	67.68	NM	NM	NM	45.1	NM	NM	NM
IPR-19D	12/13/2011	67.96	ND	18.71	89.82	89.9	0	0.1	49.25
IPR-20	12/13/2011	66.70	NM	17.62	44.05	45.4	0	1.35	49.08
IPR-21	12/13/2011	67.67	ND	18.48	42.71	45.0	0	2.25	49.19
IPR-22	12/13/2011	66.33	ND	17.36	40.20	45.4	0	5.2	48.97
IPR-23	12/13/2011	66.67	ND	17.66	ND	45.4	0	0	49.01
IPR-24	12/13/2011	65.88	ND	17.01	43.05	44.4	0	1.3	48.87
IPR-25 ²	NM	70.56	NM	NM	NM	CIP	NM	NM	NM
IPR-26 ²	NM	NM	NM	NM	NM	CIP	NM	NM	NM
IPR-27 ²	NM	NM	NM	NM	NM	CIP	NM	NM	NM
IPR-28	NM	NM	NM	NM	NM	CIP	NM	NM	NM
IPR-29 ²	12/13/2011	NM	ND	16.98	47.80	50.0	0	2.2	NM
IPR-30	12/13/2011	NM	ND	17.97	48.40	50.0	0	1.6	NM
IPR-31	NM	NM	NM	NM	NM	NM	NM	NM	NM
OSMW-01	12/13/2011	71.12	ND	21.23	ND	42.2	0	0	49.89
OSMW-02	12/13/2011	71.59	ND	21.95	ND	45.2	0	0	49.64
OSMW-03	12/13/2011	71.39	ND	21.83	ND	44.7	0	0	49.56

Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected

using a specific gravity = 0.96

(2) Well Closed In Place (CIP) on November 10-11, 2011 at the start of the In-Situ Solidification

(3) Well apparently destroyed by Town of Hempstead sidewalk construction.

sheen Sheen = assumed thickness of 0.01 ft

NM not measured

LNAPL light non-aqueous phase liquid DNAPL dense non-aqueous phase liquid

TOR top of riser

amsl above mean sea level ND NAPL not detected

Table 3
NAPL Recovery First Quarter of 2011
Hempstead Intersection Street Former MGP Site

	Jai	nuary 4, 20	11	Jar	nuary 21, 20)11	Feb	ruary 10, 2	011	Fel	bruary 23, 2	2011	M	larch 15, 20	11	M	arch 29, 20	11
		Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness		Volume	Thickness		Volume	Thickness	Thickness	Volume
Well ID	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed
1 1			(1)			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	NI	NI	0.00	ND	ND	0.00	NI	NI		ND	0.01	0.00			0.00	ND	0.00	0.00
HIMW-01I	ND	0.80	0.75	ND	0.1	0.00	NI	NI	0.00	ND	1.00	0.00	NI		0.00	ND	1.40	0.24
HIMW-06S	NI	NI	0.00	ND	1.00	0.17	ND	1.50	0.25	NI	4.00	0.68			0.60	ND	4.70	0.80
HIMW-06I	NI	NI	0.00	ND	0.40	0.07	NI	NI	0.00	ND	ND		NI		0.00	ND	0.01	0.00
HIMW-07S	ND	1.20	0.20	ND	1.00	0.17	ND	1.70	0.30	ND	2.60				0.09	ND	0.50	0.09
HIMW-07I	NI	NI	0.00	ND	ND	0.00	NI	NI		ND	ND		NI		0.00	ND	0.00	0.00
HIMW-07D	NI	NI	0.00	ND	ND	0.00	NI	NI		ND	ND				0.00	ND	0.00	0.00
HIMW-11S	NI	NI	0.00	NI	NI	0.00	NI	NI		NI	NI		NI		0.00	ND	0.00	0.00
HIMW-11I	NI	NI	0.00	NI	NI	0.00	NI	NI		NI	NI		NI		0.00	ND	0.00	0.00
HIMW-16S	ND	4.70	0.79	ND	5.1	0.00	ND	6.75		ND	5.50		NI		0.00	ND	6.90	1.17
HIMW-16I	ND	4.70	0.79	ND	4.7	0.00	ND	6.05		ND	5.70		NI		0.00	ND	6.00	1.02
HIMW-17S	NI	NI	0.00	ND	1.2	0.00	NI	NI	0.00	ND	0.60	0.10	NI		0.00	ND	1.70	0.00
HIMW-18S	NI	NI	0.00	ND	0.30	0.05	NI	NI	0.00	ND	ND	0.00			0.00	ND	0.01	0.00
HIMW-18I	NI	NI	0.00	ND	ND	0.00	NI	NI		ND	ND				0.00	ND	0.00	0.00
HIMW-19S	NI	NI	0.00	ND	0.1	0.00	NI	NI	0.00	ND	ND		NI		0.00	ND	0.95	0.00
HIMW-19I	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND		NI		0.00	ND	0.00	0.00
HIMW-21	NI	NI	0.00	ND	1.50	2.25	ND	0.65	1.00	ND	0.4	0.33	NI		0.00	ND	1.65	0.00
PZ-08	ND	1.20	0.20	ND	0.1	0.00	NI	NI	0.00	ND	1.10				0.00	ND	0.01	0.00
IPR-02	NI	NI	0.00	ND	0.1	0.00	NI	NI	0.00	NI	NI		NI		0.00	ND	1.10	0.00
IPR-03	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND		NI		0.00	ND	0.01	0.00
IPR-05	NI	NI	0.00	ND	0.8	0.00	NI	NI	0.00	NI	NI		NI		0.00	ND	0.00	0.00
IPR-06	ND	1.10	1.65	ND	1.00	1.5	NI	NI	0.00	ND	1.60				2.25	ND	1.60	2.40
IPR-09	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND		NI		0.00	ND	0.75	1.13
IPR-12A	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00	NI		0.00	ND	0.01	0.00
IPR-14	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00	NI		0.00	ND	0.00	0.00
IPR-15	NI	NI	0.00	ND	0.01	0.00	NI	NI	0.00	ND	ND	0.00	NI		0.00	ND	0.01	0.00
IPR-16	NI	NI	0.00	ND	0.7	0.00	NI	NI	0.00	ND	0.30	0.00	ND		1.50	ND	1.15	0.00
IPR-17	NI	NI	0.00	ND	0.01	0.00	NI	NI	0.00	ND	ND		NI		0.00	ND	1.10	0.00
IPR-18	NI	NI	0.00	NI	NI	0.00	NI	NI		ND	ND	0.00	NI		0.00	ND	0.00	0.00
IPR-19D	NI	NI	0.00	NI	NI	0.00	NI	NI		ND	ND	0.00			0.00	ND	0.00	0.00
IPR-20	NI	NI	0.00	ND	0.3	0.00	NI	NI	0.00	ND	0.10				0.00	ND	0.70	0.00
IPR-21	ND	0.90	1.35	ND	0.55	0.00	NI	NI	0.00	ND	0.01	0.00			0.00	ND	2.70	0.00
IPR-22	NI	NI	0.00	ND	2.30	3.45	ND	2.1	1.50	ND	1.25				1.40		1.30	0.00
IPR-23	NI	NI	0.00	NI	NI	0.00	NI	NI		ND	ND				0.00	ND	0.00	0.00
IPR-24	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	ND	0.40				0.00	ND	0.01	0.00
IPR-25	ND	1.90	2.85	ND	1.40	0.00	NI	NI	0.00	ND					0.00	ND	2.10	0.00
IPR-26	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI		NI		0.00	ND	1.30	1.95
IPR-27	ND	1.20	1.80	ND	0.70	1.10	ND	1.10		ND	1.50		NI		0.00	ND	1.60	0.50
IPR-28	NI	NI	0.00	ND	0.40	0.60	NI	NI	0.00	ND	ND		NI		0.00	ND	0.01	0.00
IPR-29	NI	NI	0.00	ND	0.90	0.00	ND	1.25	0.30	ND	1.40		ND		1.30	ND	1.40	0.00
IPR-30	ND	0.50	0.75	NI	NI	0.00	NI	NI	0.00	ND	0.60	0.00	NI	NI	0.00	ND	0.85	0.00
	Volume Rei	moved	11.13	Volume Re	moved	9.36	Volume Re	moved	6.20	Volume Re	emoved	6.78	Volume Re	emoved	7.14	Volume Re	emoved	9.30

Total volume recovered during the first quarter 2010: Total volume of NAPL recovered since April 2007:

49.91 gal 656.8 gal Well temporarily inaccessible at time of monitoring event due to snow or on-site soil stockpile

Notes:

NI - well not included in the product recovery event

ND - non-detect

LNAPL - light non-aqueous phase liquid DNAPL - dense non-aqueous phase liquid

(1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter: Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

 Vol =
 1.469 gal / lft of well screen.

 Vol =
 1.349 gal / lft of well screen.

 Vol =
 0.163 gal / lft of well screen.

 Vol =
 0.041 gal / lft of well screen.

Table 3
NAPL Recovery for Second Quarter of 2011
Hempstead Intersection Street Former MGP Site

	Α	pril 15, 201	1	M	1ay 2-3, 201	1	N	May 20, 201	1	Jı	une 7-8, 201	11	J	une 23, 201	1
	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume
Well ID	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed
			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00			0.00
HIMW-01I	ND	1.30	0.20	ND	1.50	0.26	ND	0.30	0.05	ND	ND	0.00	NI	NI	0.00
HIMW-06S	ND	2.10	0.40	ND	1.30	0.22	ND	2.00	0.34	ND	2.00	0.34	ND	2.50	0.43
HIMW-06I	NI	NI	0.00	ND	ND	0.00	ND	0.01	0.00	ND	ND	0.00	NI	NI	0.00
HIMW-07S	ND	0.50	0.01	ND	0.01	0.00	ND	2.00	0.34	ND	1.00	0.17	ND	0.05	0.00
HIMW-07I	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00
HIMW-07D	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00
HIMW-11S	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00
HIMW-11I	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00
HIMW-16S	NI	NI	0.00	ND	5.00	0.85	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00
HIMW-16I	NI	NI 4.50	0.00	ND	5.00	0.85	NI	NI	0.00	NI ND	NI 4.50	0.00	NI	NI 0.00	0.00
HIMW-17S	ND	1.50	0.25	ND	1.20	0.20	NI NI	NI	0.00	ND	1.50	0.26	ND	0.80	0.14
HIMW-18S	NI	NI	0.00	ND	0.01	0.00		NI	0.00	ND	0.01	0.00	NI NI	NI	0.00
HIMW-18I	NI NI	NI NI	0.00	ND ND	ND ND	0.00	NI NI	NI NI	0.00	ND ND	ND ND	0.00	NI NI	NI NI	0.00
HIMW-19S HIMW-19I	NI NI	NI NI	0.00	ND ND	ND ND	0.00	NI NI	NI NI	0.00	ND ND	ND ND	0.00	NI NI	NI NI	0.00
HIMW-21	NI	NI	0.00	NI NI	NI NI	0.00	NI NI	NI NI	0.00	ND ND	1.00	1.50	ND	0.40	0.60
PZ-08	ND	0.01	0.00	ND	0.01	0.00	ND	0.90	0.00	ND ND	1.00	0.17	ND ND	0.40 ND	0.60
IPR-02	ND ND	0.01	1.35	ND ND	1.00	1.50	ND ND	0.90	1.05	ND ND	ND	0.17	ND ND	0.30	0.00
IPR-03	NI	0.90 NI	0.00	ND ND	ND	0.00	NI	0.70	0.00	ND ND	ND ND	0.00	NI NI	NI	0.43
IPR-05	NI	NI	0.00	NI NI	NI NI	0.00	NI	NI NI	0.00	NI NI	NI	0.00	NI NI	NI	0.00
IPR-06	ND	1.20	1.50	ND	1.00	1.50	ND	0.90	1.35	ND	1.50	2.25	ND	0.30	0.00
IPR-09	ND ND	0.90	1.35	ND ND	1.20	0.00	NI	0.90 NI	0.00	ND ND	ND	0.00	NI	NI	0.43
IPR-12A	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND ND	ND ND	0.00	NI	NI	0.00
IPR-14	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND ND	ND ND	0.00	NI	NI	0.00
IPR-15	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND ND	ND.	0.00	NI	NI	0.00
IPR-16	ND	1.20	1.70	ND	0.01	0.00	NI	NI NI	0.00	ND	1.00	1.50	ND.	ND.	0.00
IPR-17	ND	1.30	1.80	ND	1.50	0.00	ND	0.60	0.25	ND	ND	0.00	ND	ND	0.00
IPR-18	NI	NI	0.00	ND	ND	0.00	NI	NI NI	0.00	ND	ND	0.00	NI	NI	0.00
IPR-19D	NI	NI	0.00	ND	ND	0.00	NI NI	NI NI	0.00	ND	ND	0.00	NI NI	NI NI	0.00
IPR-20	ND	0.01	0.00	ND	0.01	0.00	NI	NI	0.00	ND	0.60	0.00	NI NI	NI	0.00
IPR-21	ND	2.00	3.00	ND	3.10	3.00	ND	0.80	0.50	ND	3.00	4.50	ND	2.40	3.60
IPR-22	NI	NI	0.00	ND	0.90	0.00	ND	1.50	2.00	ND	0.80	1.20	ND	1.00	1.50
IPR-23	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00	ND	ND	0.00	NI	NI	0.00
IPR-24	NI	NI	0.00	ND	0.01	0.00	NI	NI	0.00	ND	1.00	1.50	NI	NI	0.00
IPR-25	ND	2.20	0.00	NI	NI	0.00	ND	2.00	3.00	ND	2.00	3.00	ND	3.40	0.00
IPR-26	ND	1.00	1.50	ND	0.80	1.20	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00
IPR-27	ND	1.50	0.50	ND	1.50	0.00	ND	2.50	0.50	ND	2.00	0.00	ND	1.30	1.95
IPR-28	NI	NI	0.00	ND	0.50	0.00	ND	0.20	0.30	ND	ND	0.00	ND	0.30	0.45
IPR-29	ND	1.20	1.80	ND	0.20	0.00	ND	0.80	0.00	ND	1.00	1.50	ND	0.40	0.60
IPR-30	ND	1.50	0.00	ND	2.00	2.00	NI	NI	0.00	ND	0.40	0.00	NI	NI	0.00
			Volume Re	moved	11.58	Volume Re	emoved	9.83	Volume Re	moved	17.89	Volume Re	moved	10.17	

Total volume recovered during the second quarter 2011: Total volume of NAPL recovered since April 2007:

64.83 gal 721.7 gal Well temporarily inaccessible at time of monitoring event.

Notes:

NI - well not included in the product recovery event

ND - non-detect

LNAPL - light non-aqueous phase liquid DNAPL - dense non-aqueous phase liquid

(1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter: Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

Table 3
NAPL Recovery for Third Quarter of 2011
Hempstead Intersection Street Former MGP Site

			cua inte			
		uly 7-8, 201			luly 26, 201	
		Thickness	Volume		Thickness	
Well ID	of LNAPL	of DNAPL		of LNAPL	of DNAPL	Removed
	56.7	F4.7	(1)	***	56.7	(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	ND	0.1	0.00	NI	NI	0.00
HIMW-01I	ND	1.75	0.30	ND	0.01	0.00
HIMW-06S	ND	ND	0.00	ND	2.10	0.36
HIMW-06I	ND	ND	0.00	NI	NI	0.00
HIMW-07S	ND	1.20	0.20	ND	0.50	0.09
HIMW-07I	ND	NI	0.00	NI	NI	0.00
HIMW-07D	ND	NI	0.00	NI	NI	0.00
HIMW-11S	ND	ND	0.00	NI	NI	0.00
HIMW-11I HIMW-16S	ND ND	ND 3.20	0.00	NI NI	NI NI	0.00
HIMW-165	ND ND	3.20	0.54 0.60	NI NI	NI NI	0.00
HIMW-17S	NI NI	3.50 NI	0.60	ND	0.50	0.00
HIMW-17S	ND	0.8	0.00	ND ND	0.30	0.05
HIMW-181	ND	ND	0.14	NI	NI	0.00
HIMW-19S	ND	0.3	0.05	ND	0.01	0.00
HIMW-191	ND	ND	0.00	NI	NI	0.00
HIMW-21	ND	0.01	0.00	ND	0.65	0.98
PZ-08	ND	0.15	0.03	NI	NI	0.00
IPR-02	ND	0.01	0.00	NI	NI	0.00
IPR-03	ND	ND	0.00	NI	NI	0.00
IPR-05	ND	ND	0.00	NI	NI	0.00
IPR-06	ND	0.90	1.35	ND	0.70	1.05
IPR-09	ND	0.01	0.00	NI	NI	0.00
IPR-12A	ND	ND	0.00	NI	NI	0.00
IPR-14	ND	ND	0.00	NI	NI	0.00
IPR-15	ND	ND	0.00	NI	NI	0.00
IPR-16	ND	ND	0.00	NI	NI	0.00
IPR-17	ND	ND	0.00	NI	NI	0.00
IPR-18	ND	NI	0.00	NI	NI	0.00
IPR-19D	ND	NI	0.00	NI	NI	0.00
IPR-20	ND	0.05	0.08	NI	NI	0.00
IPR-21	ND	0.40	0.60	ND	1.00	1.50
IPR-22	ND	1.1	1.65	ND	1.00	1.50
IPR-23	ND	ND	0.00	NI	NI	0.00
IPR-24	ND	0.2	0.30	NI	NI	0.00
IPR-25	ND	2.00	3.00	ND	1.35	2.03
IPR-26	ND	0.01	0.00	NI	NI	0.00
IPR-27	ND	1.50	2.25	ND	1.30	1.95
IPR-28	ND	0.01	0.00	NI	NI	0.00
IPR-29	NI	NI	0.00	ND	0.40	0.60
IPR-30	ND	0.30	0.45	NI	NI	2.00
	Volume Re	moved	11.53	Volume Re	12.18	

Total volume recovered during the third quarter 2011: 23.71
Total volume of NAPL recovered since April 2007: 745.4

Notes:

NI - well not included in the product recovery event

ND - non-detect

LNAPL - light non-aqueous phase liquid DNAPL - dense non-aqueous phase liquid

(1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter: Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

Vol =	1.469
Vol =	1.349
Vol =	0.163
Vol =	0.041

Table 4

Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds

Data Collected in First through Fourth Quarter 2011

Hempstead Intersection Street Former MGP Site

		uarter 2011 14 - 28, 2011	Third Qua			Quarter 2011 June 3, 2011	First Quarter 2011 January 26- February 8, 2011		
Well ID	BTEX	PAH	BTEX	PAH	BTEX	PAH	BTEX	PAH	
	[ug/L]	[ug/L]	[ug/L]	[ug/L]	[ug/L]	[ug/L]	[ug/L]	[ug/L]	
HIMW-001D	CIP	CIP		. 0 ,	. 0 .				
HIMW-001I	CIP	CIP							
HIMW-001S	CIP	CIP							
HIMW-002D									
HIMW-002I HIMW-002S									
HIMW-0023	ND	ND			ND	ND			
HIMW-003I	ND	ND			ND ND	ND ND			
HIMW-003S	ND	ND	ND	ND	ND	ND			
HIMW-004D									
HIMW-004I									
HIMW-004S	100	544		4 400	400	100	145.0	4 470	
HIMW-005D HIMW-005I	182 126	2,648	174 159	1,400 2,499	133 146	166 2,120	145.3 136.9	1, 178 2,090	
HIMW-005S	126 ND	2,648 ND	ND	2,499 ND	ND	2,120 ND	136.9 ND	2,090 ND	
HIMW-006D			. 15	. 10	.,,,,	.,,,	.10	.,,,,	
HIMW-006D HIMW-006I	CIP CIP	CIP							
HIMW-006S		CIP							
HIMW-007D	CIP	CIP							
HIMW-007I HIMW-007S	CIP CIP	CIP CIP							
HIMW-008D	ND	ND ND	ND	ND	ND	ND	ND	ND	
HIMW-008B	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	
HIMW-008S	ND	4	3	9	ND	3	ND	ND ND	
HIMW-009D									
HIMW-009I									
HIMW-009S									
HIMW-010D									
HIMW-010I HIMW-010S									
HIMW-011D									
HIMW-011I									
HIMW-011S									
HIMW-012D	ND	ND	ND	ND	ND	ND	ND	ND	
HIMW-012I	63 ND	166 ND	89 ND	136 ND	64 ND	108 ND	54.4 338.8	104 1,391	
HIMW-012S HIMW-013D	5 5	ND 14	6 ND	19	2	17	338.8 8.1	1,391	
HIMW-013B	27	62	96	75	142	67	205.4	128	
HIMW-013S	ND	ND	ND	ND	ND	ND		1-2	
HIMW-014D	ND	ND			ND	ND			
HIMW-014I	28	58	28	61	29	42	37	39	
HIMW-015D	ND	ND	ND	ND	ND 00	ND	ND	ND	
HIMW-015I HIMW-016I	24	34	27	31	23	31	24.7	27	
HIMW-016S	 								
HIMW-017S	†								
HIMW-018I	CIP	CIP							
HIMW-018S	CIP	CIP							
HIMW-019I	CIP	CIP							
HIMW-019S HIMW-020I	CIP 1	CIP ND	10	2	198	530	186	1,144	
HIMW-020S	ND	ND ND	ND	ND	ND	ND	1.7	1,144 ND	
HIMW-022	1	ND ND	2	ND ND	ND ND	ND ND	1.7	110	
HIMW-023	1	ND	2	2	43	11			
HIMW-024	671	792	900	897	870	1,020			
HIMW-025	10	ND	109	573	552	573			
PZ-02 PZ-03	1	 				+			
PZ-03 PZ-08	CIP	CIP							
FZ=00	GIF	OIF							

Notes:

A blank field is "Not Sampled".

NAPL is periodically identified in this well.

ND Not Detected.

ug/L micrograms per liter
CIP Well was Closed In Place on November 10-11, 2011

Table 5 **Groundwater Treatment Performance Monitoring** First Quarter 2011 **Hempstead Intersection Street Former MGP Site**

S y		1/7/2011			1/21/2011			2/9/2011				3/2/2011		3/18/2011		
S	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
t	MP-2-1	30.57	14.57	0	30.56	11.05	0	30.51	13.12	0	30.09	11.10	0	29.43	19.60	0
е	MP-2-2	31.66	29.54	0	31.62	21.30	0	31.57	40.48	0	31.13	23.57	0	30.47	39.21	0
m	MP-2-3S	31.76	46.97	0.1	31.68	48.62	0	31.66	41.81	0.1	31.21	48.95	0.1	30.58	48.05	0
	MP-2-3D	31.98	47.12	0.1	31.92	48.45	0	31.91	49.01	0.1	29.25	48.50	0	30.80	49.00	0
#	MP-2-4	20.50	33.35	0	CNL	CNL	CNL	20.38	32.31	0	19.95	30.60	0	19.31	35.64	0.1
2	MP-2-5	CNL	CNL	CNL	CNL	CNL	CNL	CNL	CNL	CNL	18.14	17.05	0	17.53	12.35	0

DTW: Depth to water (feet)

DO: Dissolved Oxygen concentration (percent or milligrams per liter)
PID: Photoionization Detector measurement of well headspace (parts per million)

CNL: Could Not Locate, due to snow accumulation

Table 5 **Groundwater Treatment Performance Monitoring** Second Quarter 2011 **Hempstead Intersection Street Former MGP Site**

			5/20/2011			5/27/2011			6/23/2011	
	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
S	MP-1-1S	25.29	34.87	0.0	25.10	17.23	0.0	25.49	8.51	3.0
у	MP-1-1D	25.17	33.32	0.0	24.97	26.39	0.0	25.27	9.39	1.6
s	MP-1-2S	19.71	29.27	0.0	19.72	13.41	0.0	19.97	12.03	5.4
t	MP-1-2D	19.44	47.14	0.0	19.39	25.24	0.0	19.72	21.97	2.8
e	MP-1-3S	17.46	7.74	0.0	17.50	7.68	0.0	17.78	21.14	3.3
m	MP-1-3D	17.47	4.61	0.0	17.48	9.04	0.0	17.77	47.52	8.5
	MP-1-4S	19.94	7.02	0.0	20.01	6.12	0.0	20.29	7.16	279.7
	MP-1-4D	20.12	39.79	0.0	20.04	48.14	0.0	20.46	20.36	54.5
#	MP-1-5	NA	NA	NA	NA	NA	NA	25.03	10.39	104.2
1	MP-1-6	17.20	20.87	0.0	19.25	9.48	0.0	17.53	9.20	41.2
	MP-1-7	20.50	0.61	0.0	20.49	1.65	0.0	20.85	1.07	7.2
	MP-1-8	21.47	2.67	0.0	21.53	5.21	0.0	21.82	21.06	11.4

S																				
у		4/12/2011			4/28/2011			5/13/2011			5/26/2011			6/10/2011			6/24/2011			
s	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	
t	MP-2-1	29.07	15.62	0.0	28.55	13.80	0.0	28.44	25.49	0.0	28.20	14.20	0.0	28.43	12.51	38.7	28.54	15.18	214.4	
е	MP-2-2	30.15	27.80	0.0	29.61	33.39	0.1	29.52	32.89	0.0	29.26	31.75	0.0	29.48	7.21	0.0	29.61	21.12	0.0	
m	MP-2-3S	30.28	48.68	0.1	29.71	39.41	0.1	29.62	49.12	0.0	29.35	43.64	0.0	29.60	8.68	0.0	29.71	12.13	7.1	
	MP-2-3D	30.52	49.10	0.1	29.93	39.52	0.0	29.86	49.21	0.0	29.61	44.41	0.0	29.83	11.91	0.0	29.97	15.79	10.2	
#	MP-2-4	19.08	36.90	0.0	18.46	32.39	0.0	18.40	39.73	0.0	18.13	45.41	0.0	18.35	11.05	1.4	18.47	9.41	149.4	
2	MP-2-5	17.27	18.37	0.0	16.63	5.23	0.0	16.63	14.35	0.0	16.31	10.32	0.0	16.58	8.46	73.8	16.70	11.20	157.1	

DTW: Depth to water (feet)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)
PID: Photoionization Detector measurement of well headspace (parts per million)

NA: Not Accessible

Table 5 **Groundwater Treatment Performance Monitoring Third Quarter 2011 Hempstead Intersection Street Former MGP Site**

			7/12/2011			7/27/2011			8/21/2011			9/14/2011			9/30/2011	
	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
S	MP-1-1S	25.87	31.7	0.0	26.32	24.14	13.4	25.40	35.14	0.0	23.66	19.45	29.3	23.66	27.24	0.0
у	MP-1-1D	25.74	26.71	11.5	26.22	36.75	7.5	25.31	47.77	2.4	23.52	39.13	33.3	23.49	31.62	6.7
s	MP-1-2S	20.39	12.92	0.0	20.89	12.94	0.0	19.51	49.38	0.0	18.08	27.17	8.1	19.8	30.24	0.0
l t	MP-1-2D	20.13	27.74	0.0	20.5	13.30	0.0	19.3	36.14	0.0	17.68	42.13	6.1	17.69	31.28	0.0
e	MP-1-3S	18.08	18.6	0.0	18.58	17.76	15.7	17.60	13.23	85.1	15.87	15.2	9.9	15.86	11.81	12.5
m	MP-1-3D	18.11	36.6	8.7	18.6	36.96	6.9	17.62	38.14	62.2	15.86	19.18	17.8	15.81	17.36	41.3
"	MP-1-4S	20.63	14.41	1491.0	21.12	18.66	981.0	20.11	18.14	157.0	18.38	12.12	102.0	18.36	10.51	1.7
l	MP-1-4D	20.82	17.47	12.3	21.34	31.77	4.8	20.28	37.86	43.0	18.57	14.2	23.0	18.57	15.14	3.8
#	MP-1-5	25.37	19.01	13.5	25.85	12.11	66.9	25.91	16.27	0.0	23.16	17.40	35.1	23.13	19.67	0.0
1	MP-1-6	17.87	10.24	13.6	18.33	20.11	112.9	17.36	19.11	4.2	15.62	8.15	9.1	15.60	9.57	4.3
	MP-1-7	21.15	8.10	1.3	21.65	3.18	0.5	20.62	4.79	0.0	18.91	6.53	0.0	18.91	9.56	0.0
	MP-1-8	22.17	8.70	5.4	22.70	22.19	4.6	21.61	9.54	0.0	19.95	12.20	7.3	18.95	17.73	10.7

S v		7/11/2011			7/26/2011			8/20/2011				9/13/2011		9/29/2011		
s	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
t	MP-2-1	28.85	26.60	9.2	29.28	22.76	49.5	28.32	24.34	15.9	26.62	14.91	13.6	26.60	21.42	101.5
е	MP-2-2	29.93	29.90	0.0	30.33	28.67	0.0	29.39	20.17	0.0	27.70	21.80	0.0	27.69	22.35	85.3
m	MP-2-3S	29.95	38.31	0.0	30.47	44.14	0.2	29.47	37.97	0.0	27.80	27.50	0.0	27.81	23.08	24.3
	MP-2-3D	30.26	49.41	0.0	30.79	45.88	0.0	29.70	27.25	0.0	28.07	42.14	0.0	27.98	21.04	15.9
#	MP-2-4	18.79	47.67	84.2	19.25	46.04	20.9	19.21	28.52	134.0	16.57	9.91	7.3	16.59	13.15	4.2
2	MP-2-5	17.04	12.63	80.7	17.46	26.11	89.9	17.37	51.03	560.0	14.75	18.61	7.7	14.80	23.40	3.7

DTW: Depth to water (feet)

DO: Dissolved Oxygen concentration (percent or milligrams per liter)
PID: Photoionization Detector measurement of well headspace (parts per million)

NA: Not Accessible

Table 5 **Groundwater Treatment Performance Monitoring** Fourth Quarter 2011 **Hempstead Intersection Street Former MGP Site**

			10/14/2011	1		10/27/2011			11/10/201			11/22/201	1		12/9/2011			12/23/2011	1
	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
S	MP-1-1S	23.83	16.09	0.0	23.93	6.69	0.0	23.83	8.20	0.0	24.00	8.41	0.0	23.91	14.21	0.0	23.93	19.67	0.1
У	MP-1-1D	23.63	9.17	0.9	23.78	6.94	0.9	23.68	6.79	0.0	23.85	6.25	0.0	23.75	7.77	0.0	23.76	5.28	0.2
s	MP-1-2S	19.21	16.76	0.0	18.35	11.67	0.8	18.21	19.43	0.0	18.42	12.16	0.0	18.29	16.42	0.0	18.33	14.68	0.0
t	MP-1-2D	17.79	44.15	0.0	17.93	12.83	0.0	17.81	43.14	0.0	18.02	17.19	0.0	17.88	18.60	0.9	17.92	37.40	0.0
e	MP-1-3S	15.94	8.01	0.0	16.12	11.97	0.0	15.98	23.45	0.0	16.19	17.37	0.0	16.03	23.12	0.0	16.10	30.83	0.0
m	MP-1-3D	15.92	9.04	0.0	16.10	7.56	0.3	15.94	7.59	0.0	16.17	6.20	0.0	15.99	6.71	0.0	16.05	4.92	0.5
'''	MP-1-4S	18.47	4.67	0.0	18.63	1.82	0.0	18.50	5.60	0.0	18.75	4.11	0.0	18.48	0.78	0.0	18.57	0.89	0.0
- 4	MP-1-4D	18.59	7.01	0.4	18.83	7.94	1.6	18.68	3.60	0.0	18.92	23.37	38.3	18.68	26.14	0.7	18.75	12.72	0.0
#	MP-1-5	23.26	14.15	0.0	23.42	10.51	0.0	23.33	10.25	0.0	23.50	17.25	0.0	23.40	27.42	0.4	23.43	22.92	0.0
1	MP-1-6	15.70	5.53	0.0	15.86	5.49	0.0	15.72	8.82	0.0	15.94	7.29	0.0	15.76	6.17	0.0	15.85	8.34	0.0
	MP-1-7	19.99	7.20	0.0	19.18	1.85	0.2	18.99	2.18	0.0	19.26	3.30	0.0	18.99	0.90	0.0	19.07	11.82	0.0
	MP-1-8	20.05	11.90	0.0	20.20	8.84	0.0	20.06	8.88	0.9	20.30	9.42	0.0	20.06	16.84	0.2	20.09	11.36	0.0

S																			
У			10/13/201	1		10/26/2011			11/9/2011			11/23/201	1		12/8/2011			12/22/2011	1
S	ID	DTW (ft)	DO (mg/L	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
τ	MP-2-1	26.79	14.13	31.1	26.98	7.78	0.5	26.88	5.98	0	26.87	8.05	0	26.97	10.07	0	27.05	9.20	0
е	MP-2-2	27.92	16.35	3.2	28.07	9.89	0	28.00	10.71	0	28.00	11.78	0	28.09	25.85	0	28.16	18.30	0
m	MP-2-3S	28.01	7.1	35.9	28.19	11.79	1.2	28.12	9.01	0	28.07	0.84	0	28.27	10.90	0.1	28.28	25.40	0
1	MP-2-3D	28.24	9.18	15.8	28.39	26.31	0	28.28	11.20	0	28.25	12.58	0	28.35	15.25	0.5	28.47	32.62	0
#	MP-2-4	16.79	23.21	0	16.94	7.79	0	16.83	7.09	0	16.81	14.86	0	16.87	9.31	0	17.01	16.70	0
2	MP-2-5	15.01	30.08	2.1	15.14	12.02	0	15.05	9.32	0	14.99	10.89	0	15.06	10.45	0	15.22	18.38	0

DTW: Depth to water (feet)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)
PID: Photoionization Detector measurement of well headspace (parts per million)
NA: Not Accessible

Hempstead Intersection Street Former MGP Site

Date: 10/1/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	1.1	0.9	0.0	32.1	Slight	No
MP-1-1D	3.7	1.2	0.0	>40	No	No
MP-1-2S	0.7	1.6	0.0	32.0	No	No
MP-1-2D	0.0	1.2	0.0	>40	Slight	No
MP-1-3S	0.7	1.2	0.0	25.1	No	No
MP-1-3D	0.2	1.4	0.0	20.6	No	No
MP-1-4S	0.5	0.6	0.0	22.4	No	No
MP-1-4D	5.4	1.6	0.0	35.4	No	No
MP-1-5	1.8	8.0	0.0	20.9	No	No
MP-1-6	0.1	2.2	0.0	19.5	No	No
MP-1-7	0.1	1.2	0.0	20.3	No	No
MP-1-8	0.4	8.0	1.0	22.1	No	No

Date: 10/7/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.5	1.0	0.0	41.1	Slight	No
MP-1-1D	0.5	0.0	0.0	21.8	Slight	No
MP-1-2S	0.4	2.0	0.0	40.4	No	No
MP-1-2D	0.2	8.0	0.0	35.6	High	No
MP-1-3S	0.3	1.0	0.0	24.9	Slight	No
MP-1-3D	0.1	0.0	0.0	21.5	No	No
MP-1-4S	0.1	0.0	0.0	22.2	No	No
MP-1-4D	2.7	2.0	0.0	28.8	Slight	No
MP-1-5	0.4	0.2	0.0	21.5	No	No
MP-1-6	0.9	1.0	0.0	20.9	No	No
MP-1-7	1.1	0.6	0.0	20.8	No	No
MP-1-8	0.1	0.0	0.0	20.7	No	No

Date: 10/14/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.1	0.6	0.0	27.8	No	No
MP-1-1D	0.2	0.4	0.0	25.1	No	No
MP-1-2S	0.1	0.4	0.0	26.2	No	No
MP-1-2D	0.0	1.2	0.0	29.2	Moderate	No
MP-1-3S	0.0	8.0	0.0	26.1	Slight	No
MP-1-3D	0.0	0.0	0.0	20.9	No	No
MP-1-4S	0.1	0.6	0.0	20.9	No	No
MP-1-4D	0.5	0.4	0.0	22.6	No	No
MP-1-5	0.0	0.0	0.0	20.9	No	No
MP-1-6	0.0	0.0	0.0	20.9	No	No
MP-1-7	0.0	0.6	0.0	20.9	No	No
MP-1-8	0.0	0.0	0.0	20.9	No	No

Hempstead Intersection Street Former MGP Site

Date: 10/26/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	3.6	1.6	0.0	>40	Slight	No
MP-1-1D	1.3	1.3	0.0	24.5	No	No
MP-1-2S	1.5	2.4	0.0	>40	No	No
MP-1-2D	0.0	1.4	0.0	>40	High with Water Vapor	No
MP-1-3S	0.0	1.4	0.0	26.5	Moderate	No
MP-1-3D	0.6	0.2	0.0	20.9	No	No
MP-1-4S	1.2	5.2	1.0	>40	Moderate	No
MP-1-4D	7.1	2.4	1.0	>40	No	No
MP-1-5	0.0	0.6	0.0	20.9	No	No
MP-1-6	0.0	1.8	0.0	19.4	No	No
MP-1-7	0.0	2.6	0.0	18.9	No	No
MP-1-8	0.7	2.0	0.0	19.6	No	No

Date: 11/1/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.7	0.6	0.0	39.2	No	No
MP-1-1D	0.3	0.4	0.0	28.2	No	No
MP-1-2S	9.7	5.4	0.0	>40	No	No
MP-1-2D	0.0	8.0	0.0	>40	Slight	No
MP-1-3S	0.0	0.6	0.0	27.4	No	No
MP-1-3D	0.0	0.0	0.0	20.9	No	No
MP-1-4S	0.9	4.2	0.0	>40	No	No
MP-1-4D	6.2	1.8	1.0	>40	Very Slight	No
MP-1-5	0.0	0.0	0.0	20.9	No	No
MP-1-6	0.4	4.0	0.0	20.6	No	No
MP-1-7	3.7	1.2	0.0	20.6	No	No
MP-1-8	0.3	1.0	0.0	20.9	No	No

Date: 11/10/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	NM	1.0	0.0	40.0	No	No
MP-1-1D	NM	1.2	0.0	34.0	No	No
MP-1-2S	NM	1.6	0.0	37.3	No	No
MP-1-2D	NM	1.8	0.0	>40	No	No
MP-1-3S	NM	1.8	0.0	32.4	No	No
MP-1-3D	NM	1.8	0.0	19.5	No	No
MP-1-4S	NM	2.2	0.0	31.3	No	No
MP-1-4D	NM	1.2	0.0	>40	No	No
MP-1-5	NM	1.0	0.0	19.5	No	No
MP-1-6	NM	1.8	0.0	20.9	No	No
MP-1-7	NM	1.8	0.0	19.9	No	No
MP-1-8	NM	3.2	0.0	18.9	No	No

Hempstead Intersection Street Former MGP Site

Date: 11/21/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.2	1.8	0.0	>40	No	No
MP-1-1D	0.0	0.0	0.0	22.9	No	No
MP-1-2S	0.2	2.0	0.0	36.6	No	No
MP-1-2D	0.0	1.8	0.0	>40	Moderate	No
MP-1-3S	0.4	0.2	0.0	26.2	No	No
MP-1-3D	0.2	0.0	0.0	20.9	Slight	No
MP-1-4S	0.0	1.8	0.0	35.6	No	No
MP-1-4D	1.3	2.4	0.0	>40	No	No
MP-1-5	0.0	0.0	0.0	20.9	No	No
MP-1-6	0.1	0.2	0.0	20.9	No	No
MP-1-7	1.8	0.6	0.0	20.9	No	No
MP-1-8	0.1	0.2	0.0	20.9	No	No

Date: 11/30/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.0	8.0	0.0	20.6	No	No
MP-1-1D	0.5	1.2	0.0	32.3	No	No
MP-1-2S	0.0	0.6	0.0	30.0	No	No
MP-1-2D	0.0	0.6	0.0	>40	Moderate	No
MP-1-3S	0.0	0.0	0.0	23.2	Slight	No
MP-1-3D	0.1	0.4	0.0	20.9	No	No
MP-1-4S	0.0	2.6	0.0	>40	Slight	No
MP-1-4D	1.3	1.6	0.0	>40	Slight	No
MP-1-5	0.0	0.4	0.0	20.9	No	No
MP-1-6	0.1	1.0	0.0	20.5	No	No
MP-1-7	0.3	0.6	0.0	20.9	No	No
MP-1-8	0.0	8.0	0.0	20.6	No	No

Date: 12/9/2011

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.4	1.2	0.0	36.8	No	No
MP-1-1D	0.4	0.4	0.0	24.5	No	No
MP-1-2S	1.1	1.6	0.0	36.4	No	No
MP-1-2D	0.1	1.4	0.0	>40	No	No
MP-1-3S	1.4	1.0	0.0	26.7	No	No
MP-1-3D	0.2	0.0	0.0	20.9	No	No
MP-1-4S	0.4	1.0	0.0	25.1	No	No
MP-1-4D	2.5	2.4	0.0	>40	No	No
MP-1-5	1.9	0.2	0.0	20.9	No	No
MP-1-6	0.4	8.0	0.0	20.9	No	No
MP-1-7	0.4	8.0	0.0	20.9	No	No
MP-1-8	1.0	1.4	0.0	20.2	No	No

Hempstead Intersection Street Former MGP Site

Date: 12/16/2011

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.5	2.2	0.0	>40	No	No
MP-1-1D	0.5	1.2	0.0	28.7	No	No
MP-1-2S	0.6	5.8	0.0	>40	No	No
MP-1-2D	1.4	1.2	0.0	28.6	Strong	No
MP-1-3S	1.6	0.0	0.0	28.7	No	No
MP-1-3D	0.4	0.0	0.0	20.9	No	No
MP-1-4S	0.2	0.0	0.0	20.9	No	No
MP-1-4D	0.0	0.0	0.0	20.9	No	No
MP-1-5	0.4	0.2	0.0	20.9	No	No
MP-1-6	0.3	1.6	0.0	20.9	No	No
MP-1-7	0.7	0.0	0.0	20.9	No	No
MP-1-8	0.2	0.0	0.0	20.9	No	No

Date: 12/22/2011

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.2	0.4	0.0	26.0	No	No
MP-1-1D	0.1	0.6	0.0	24.8	No	No
MP-1-2S	0.4	6.6	0.0	>40	No	No
MP-1-2D	0.1	8.0	0.0	33.5	Moderate	No
MP-1-3S	0.1	1.8	0.0	30.8	No	No
MP-1-3D	0.2	0.6	0.0	20.9	No	No
MP-1-4S	0.4	0.0	0.0	20.9	No	No
MP-1-4D	1.0	0.4	0.0	26.4	No	No
MP-1-5	0.0	0.2	0.0	20.9	No	No
MP-1-6	0.4	1.6	0.0	20.9	No	No
MP-1-7	1.4	0.4	0.0	20.9	No	No
MP-1-8	0.3	0.0	0.0	20.9	No	No

Date: 12/29/2011

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-1-1S	0.0	1.8	0.0	>40	Slight	No
MP-1-1D	0.0	0.6	0.0	24.9	No	No
MP-1-2S	1.7	1.6	0.0	37.5	No	No
MP-1-2D	0.0	1.0	0.0	39.2	No	No
MP-1-3S	0.4	0.4	0.0	24.1	No	No
MP-1-3D	0.1	0.4	0.0	20.9	No	No
MP-1-4S	2.5	0.6	0.0	23.5	No	No
MP-1-4D	0.4	0.2	0.0	23.8	No	No
MP-1-5	0.1	0.2	0.0	20.9	No	No
MP-1-6	0.2	0.8	0.0	22.6	No	No
MP-1-7	0.5	8.0	0.0	20.9	No	No
MP-1-8	0.0	0.0	0.0	20.9	No	No

Table 7

Groundwater Treatment Headspace Monitoring, System No. 2 Fourth Quarter 2011

Hempstead Intersection Street Former MGP Site

Date: 10/1/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.5	0.2	0.0	21.5	No	No
MP-2-2	0.1	0.4	0.0	20.9	No	No
MP-2-3S	0.0	0.5	0.0	24.2	No	No
MP-2-3D	0.0	0.0	0.0	35.2	No	No
MP-2-4	0.2	1.2	0.0	26.6	Moderate	No
MP-2-5	0.3	1.6	0.0	25.8	No	No

Date: 10/7/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.5	0.0	0.0	21.5	No	No
MP-2-2	0.1	0.2	0.0	20.0	No	No
MP-2-3S	0.1	0.2	0.0	23.3	No	No
MP-2-3D	0.0	0.0	0.0	21.3	Slight	No
MP-2-4	0.1	0.2	0.0	28.7	Moderate	No
MP-2-5	0.0	1.8	0.0	28.0	Slight	No

Date: 10/14/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.3	0.0	0.0	21.3	No	No
MP-2-2	0.0	0.4	0.0	20.9	No	No
MP-2-3S	0.2	0.0	0.0	24.1	No	No
MP-2-3D	0.1	0.0	0.0	30.9	No	No
MP-2-4	0.0	0.2	0.0	24.0	No	No
MP-2-5	0.1	0.4	0.0	22.4	No	No

Date: 10/26/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.2	0.0	0.0	20.9	No	No
MP-2-2	0.4	0.0	0.0	20.9	No	No
MP-2-3S	0.2	1.6	0.0	25.9	No	No
MP-2-3D	0.2	0.0	0.0	24.3	No	No
MP-2-4	0.1	1.4	0.0	30.1	No	No
MP-2-5	0.5	3.2	1.0	>40	No	No

Table 7

Hempstead Intersection Street Former MGP Site

Date: 11/10/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	NM	0.0	0.0	20.9	No	No
MP-2-2	NM	0.6	0.0	19.9	No	No
MP-2-3S	NM	0.8	0.0	22.4	No	No
MP-2-3D	NM	0.2	0.0	34.0	No	No
MP-2-4	NM	1.2	0.0	29.1	No	No
MP-2-5	NM	2.4	0.0	>40	No	No

Date: 11/21/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.0	0.0	0.0	20.9	No	No
MP-2-2	0.2	0.0	0.0	20.9	No	No
MP-2-3S	0.0	0.6	0.0	22.4	No	No
MP-2-3D	0.1	0.0	0.0	20.9	No	No
MP-2-4	0.3	0.2	0.0	21.5	No	No
MP-2-5	0.4	2.2	0.0	>40	No	No

Date: 11/30/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.0	0.0	0.0	20.9	No	No
MP-2-2	0.0	0.0	0.0	20.9	No	No
MP-2-3S	0.0	0.2	0.0	20.9	No	No
MP-2-3D	0.0	0.0	0.0	22.4	No	No
MP-2-4	0.5	0.6	0.0	28.6	No	No
MP-2-5	0.0	1.4	3.0	38.6	No	No

Date: 12/9/11

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.2	0.2	0.0	20.9	No	No
MP-2-2	0.2	0.0	0.0	20.9	No	No
MP-2-3S	0.1	0.4	0.0	21.4	No	No
MP-2-3D	13.1	0.0	0.0	27.9	Slight	No
MP-2-4	0.0	1.1	0.0	27.2	No	No
MP-2-5	0.0	1.6	1.0	35.3	No	No

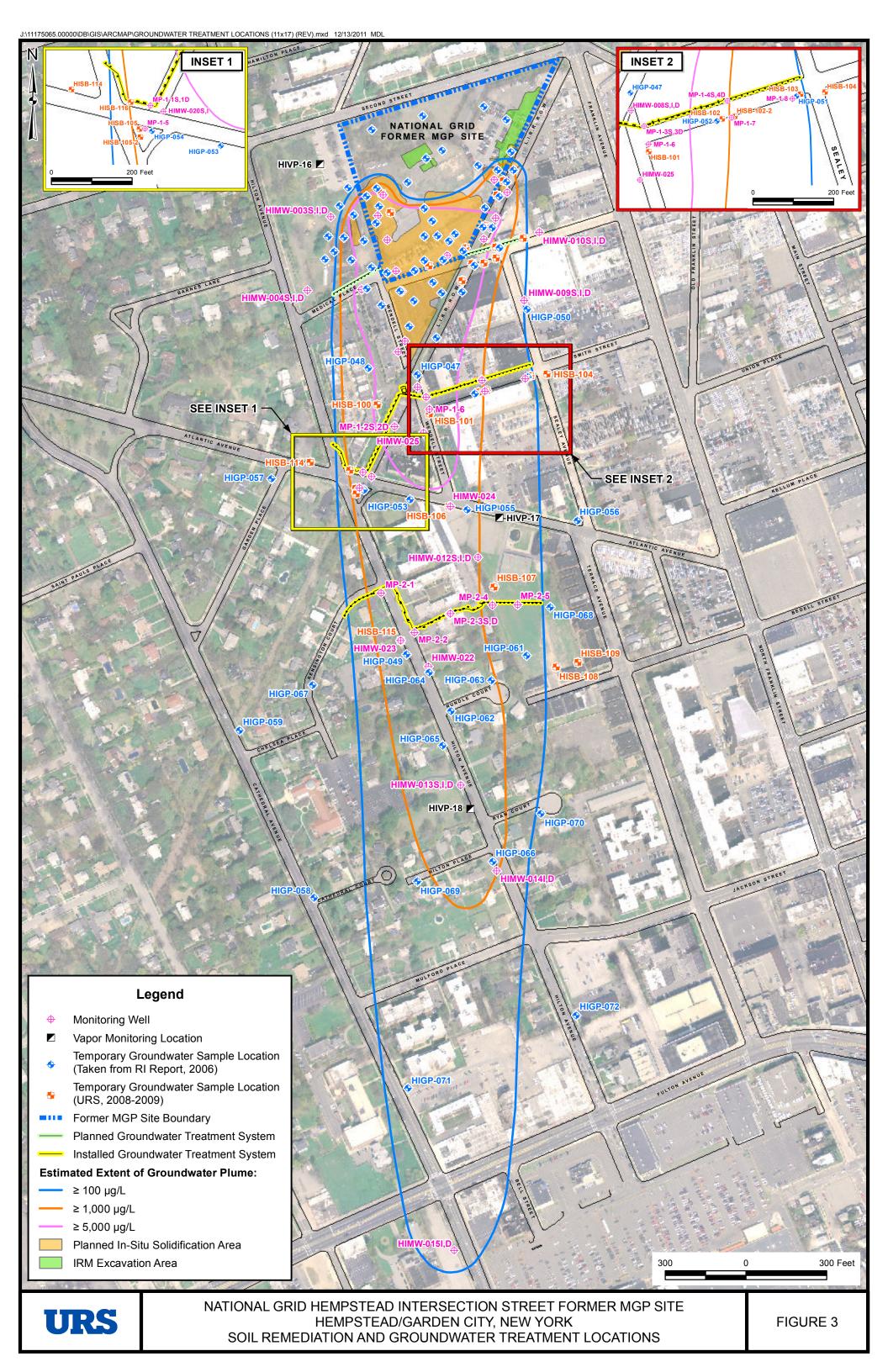
Hempstead Intersection Street Former MGP Site

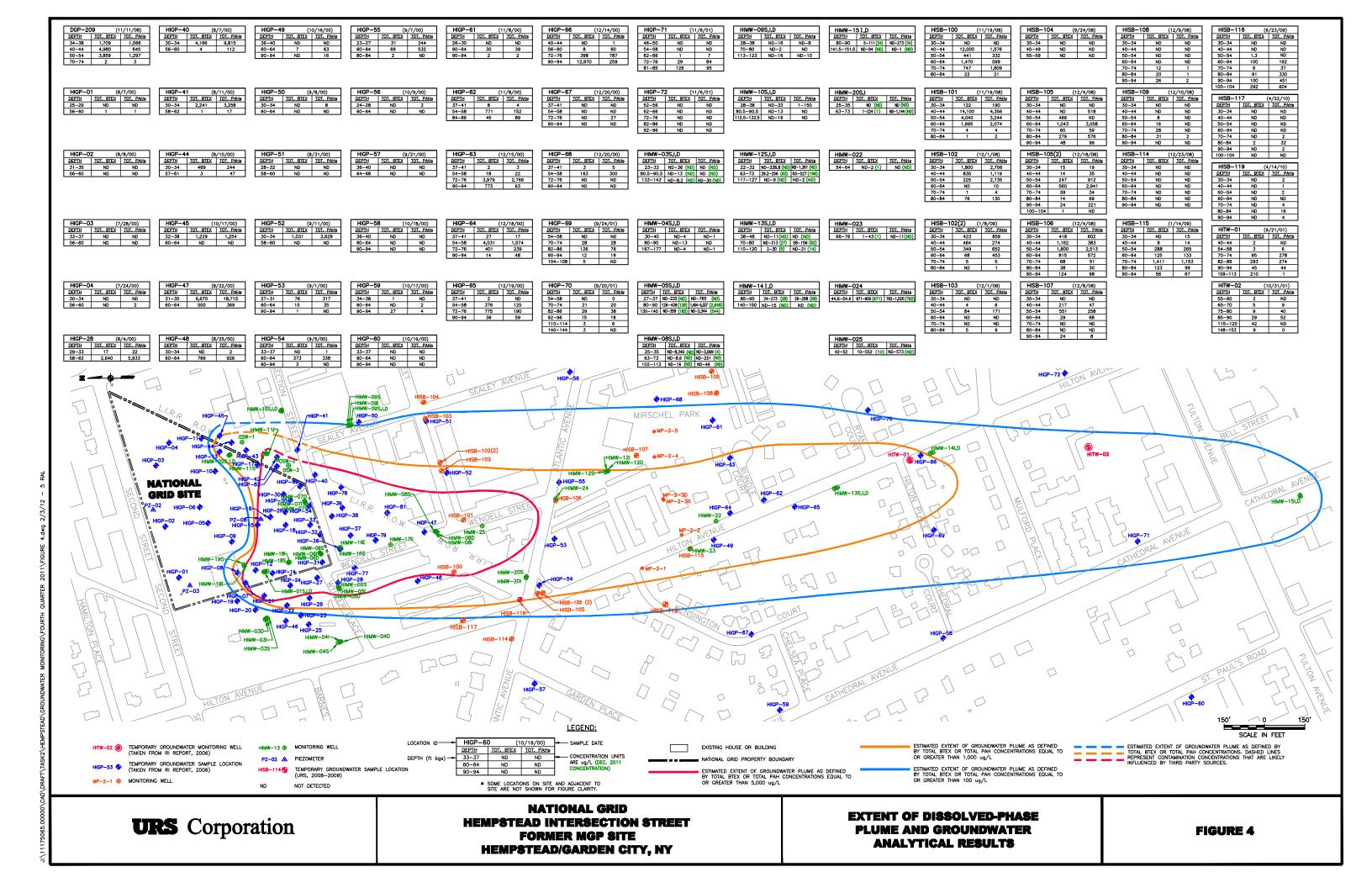
Date: 12/16/11

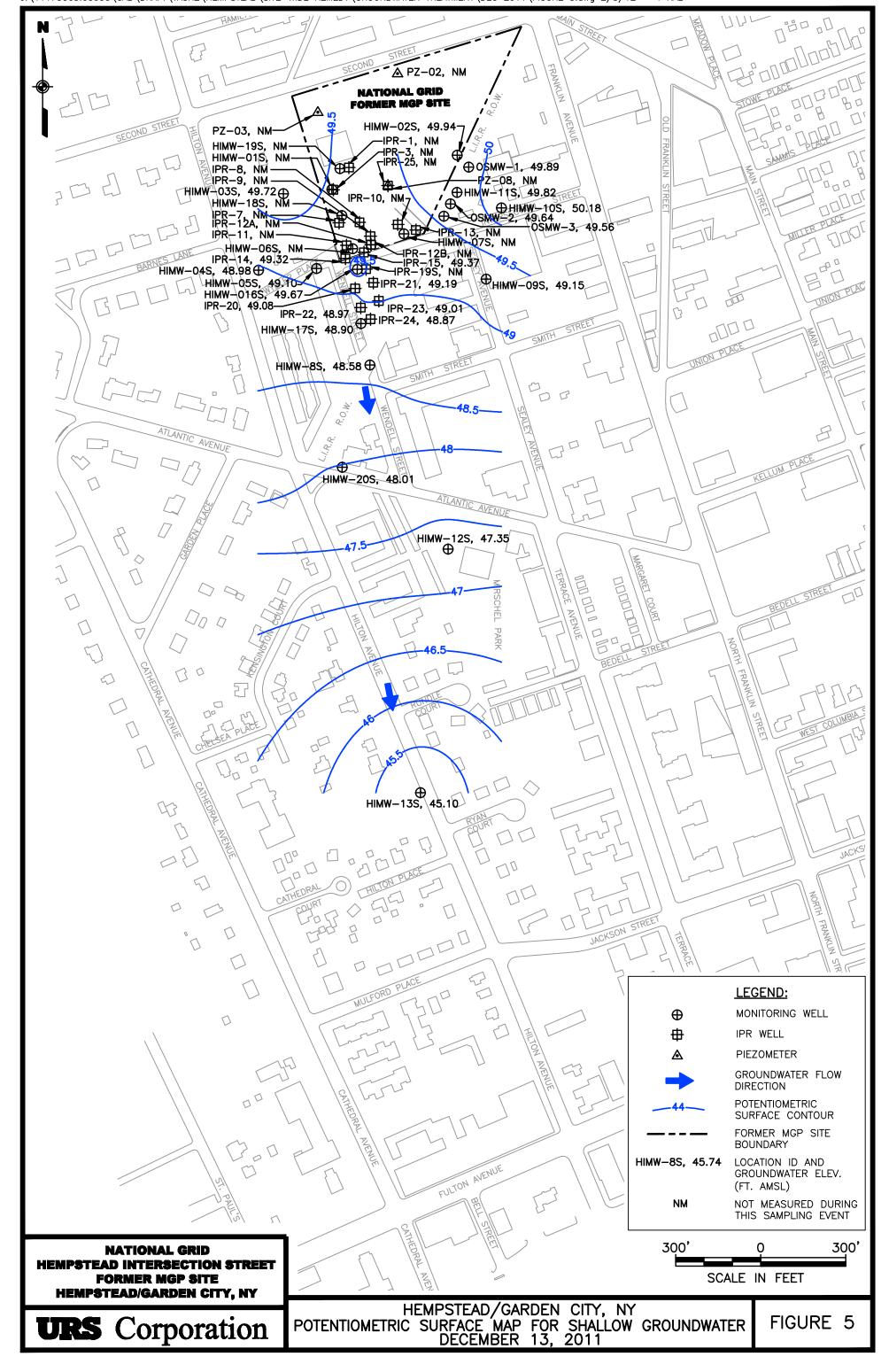
Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.5	0.4	0.0	20.9	No	No
MP-2-2	0.4	0.0	0.0	20.5	No	No
MP-2-3S	0.4	0.4	0.0	20.9	No	No
MP-2-3D	0.5	0.6	0.0	>40	Strong	No
MP-2-4	0.0	1.1	0.0	27.2	No	No
MP-2-5	0.0	1.6	1.0	30.6	No	No

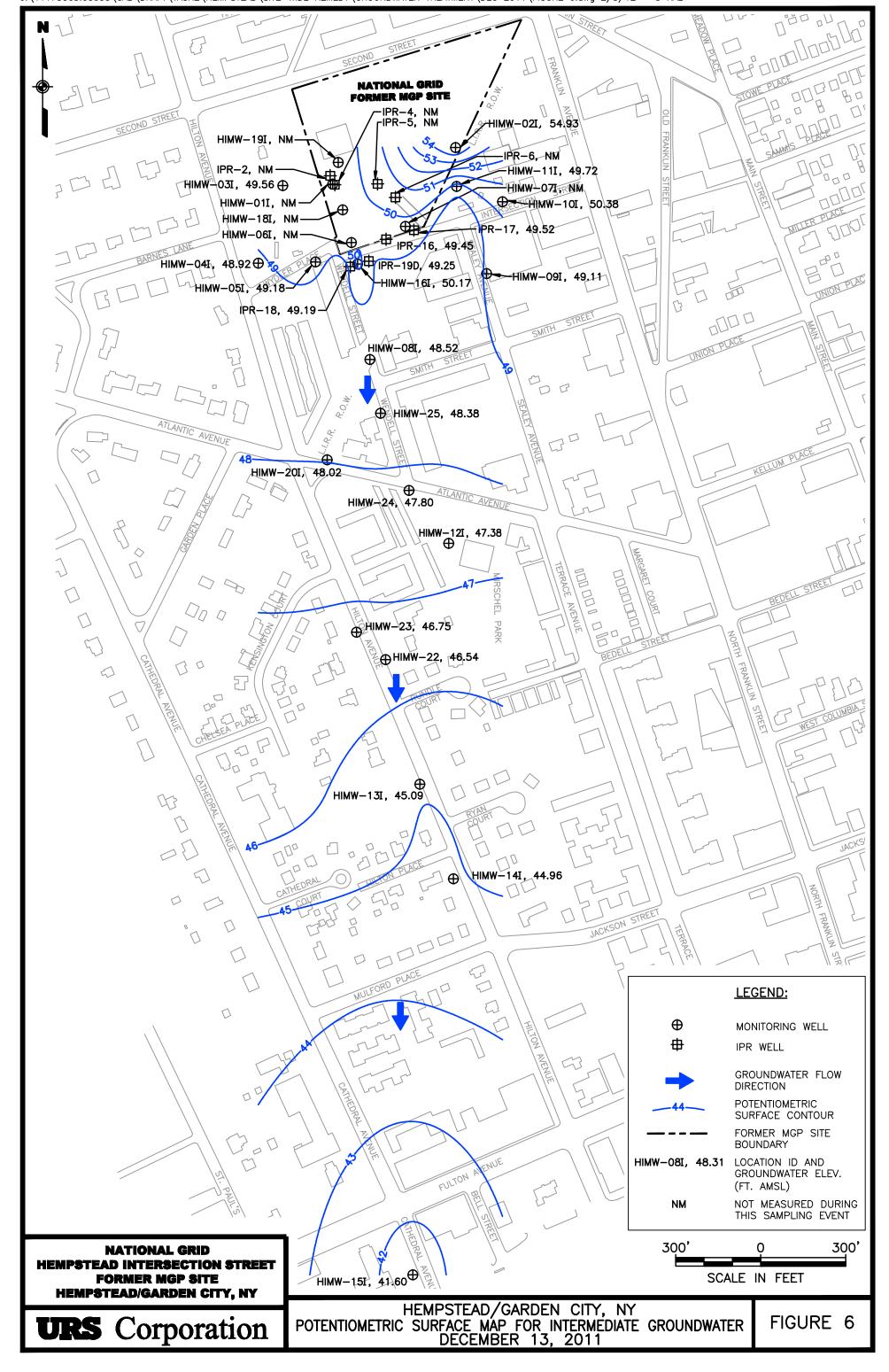
Date: 12/22/11

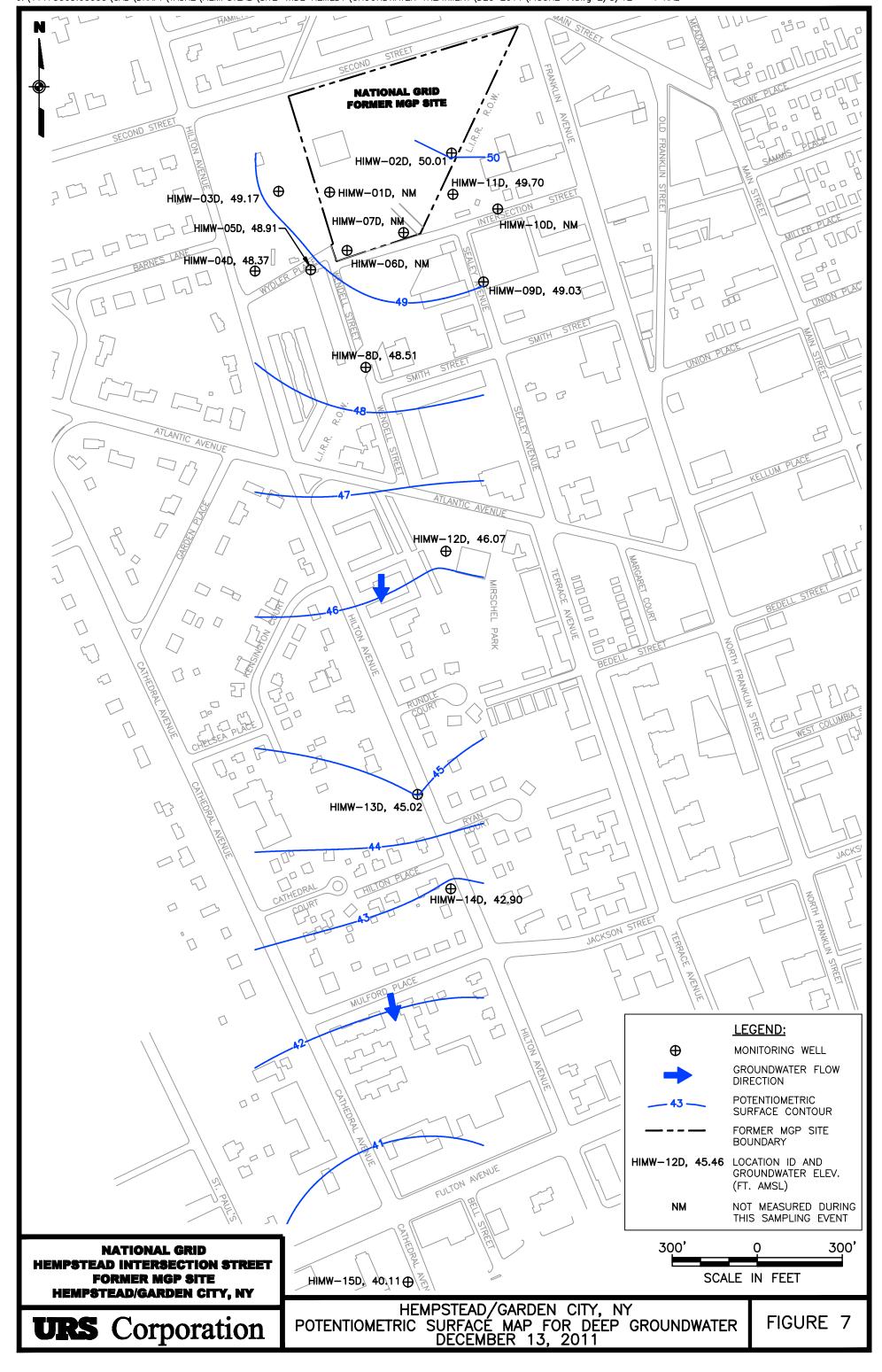

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.0	0.0	0.0	20.9	No	No
MP-2-2	0.0	0.0	0.0	20.9	No	No
MP-2-3S	0.0	0.0	0.0	20.9	No	No
MP-2-3D	0.2	1.0	0.0	>40	No	No
MP-2-4	NM	NM	NM	NM	No	No
MP-2-5	NM	NM	NM	NM	No	No

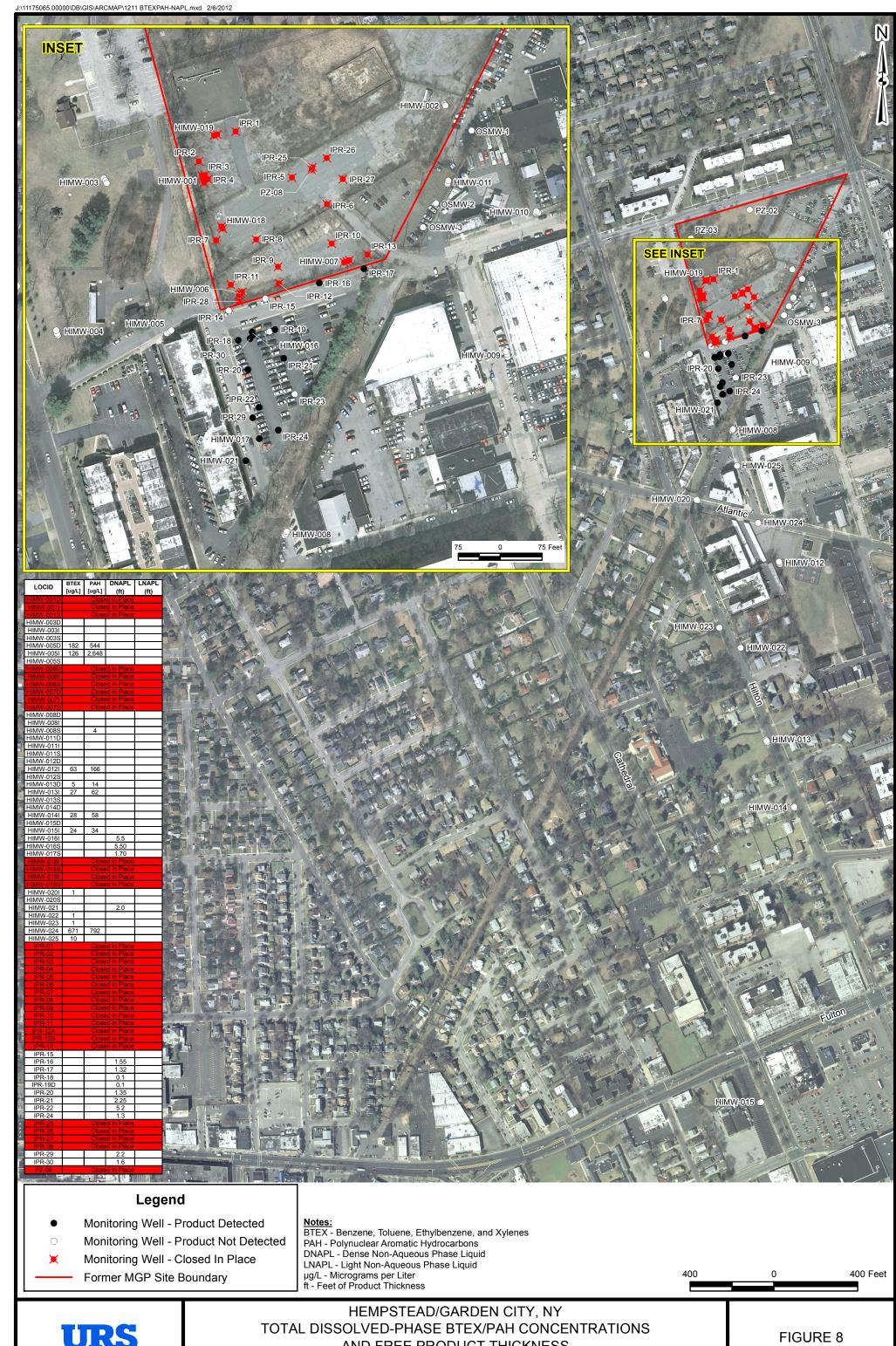

Date: 12/29/11

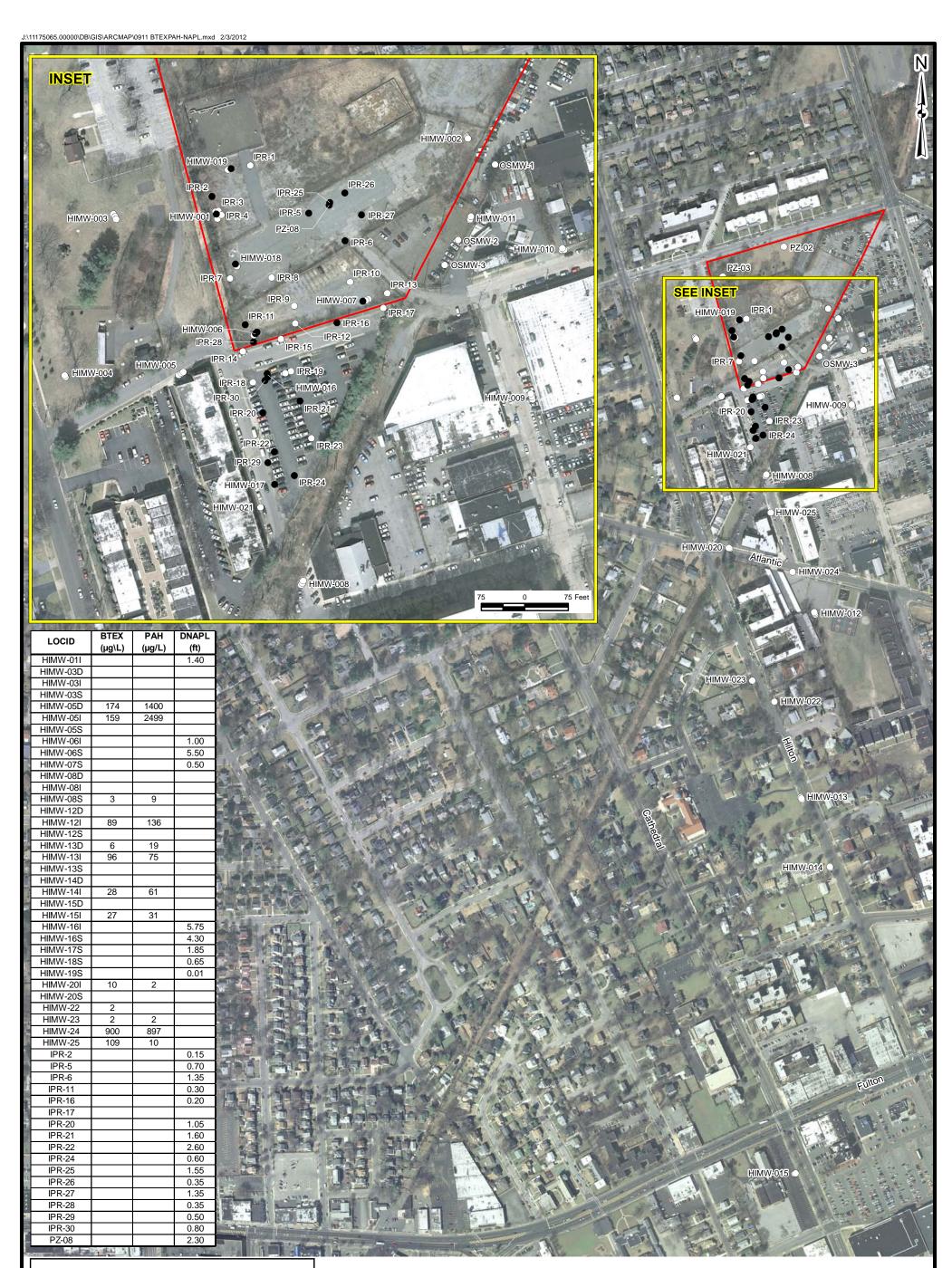

Well	VOC (ppm)	CO2 (%)	LEL (%)	O2 (%)	Pressure	Odor
MP-2-1	0.2	0.4	0.0	20.9	No	No
MP-2-2	0.0	0.0	0.0	20.9	No	No
MP-2-3S	0.2	0.2	0.0	20.9	No	No
MP-2-3D	0.2	2.2	0.1	>40	No	No
MP-2-4	0.0	1.8	1.0	38.2	Moderate	No
MP-2-5	0.3	1.8	10.0	>40	No	No


FIGURES


Æ J:\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\GROUNDWATER MONITORING\FIGURE-1.dwg 3/13/09



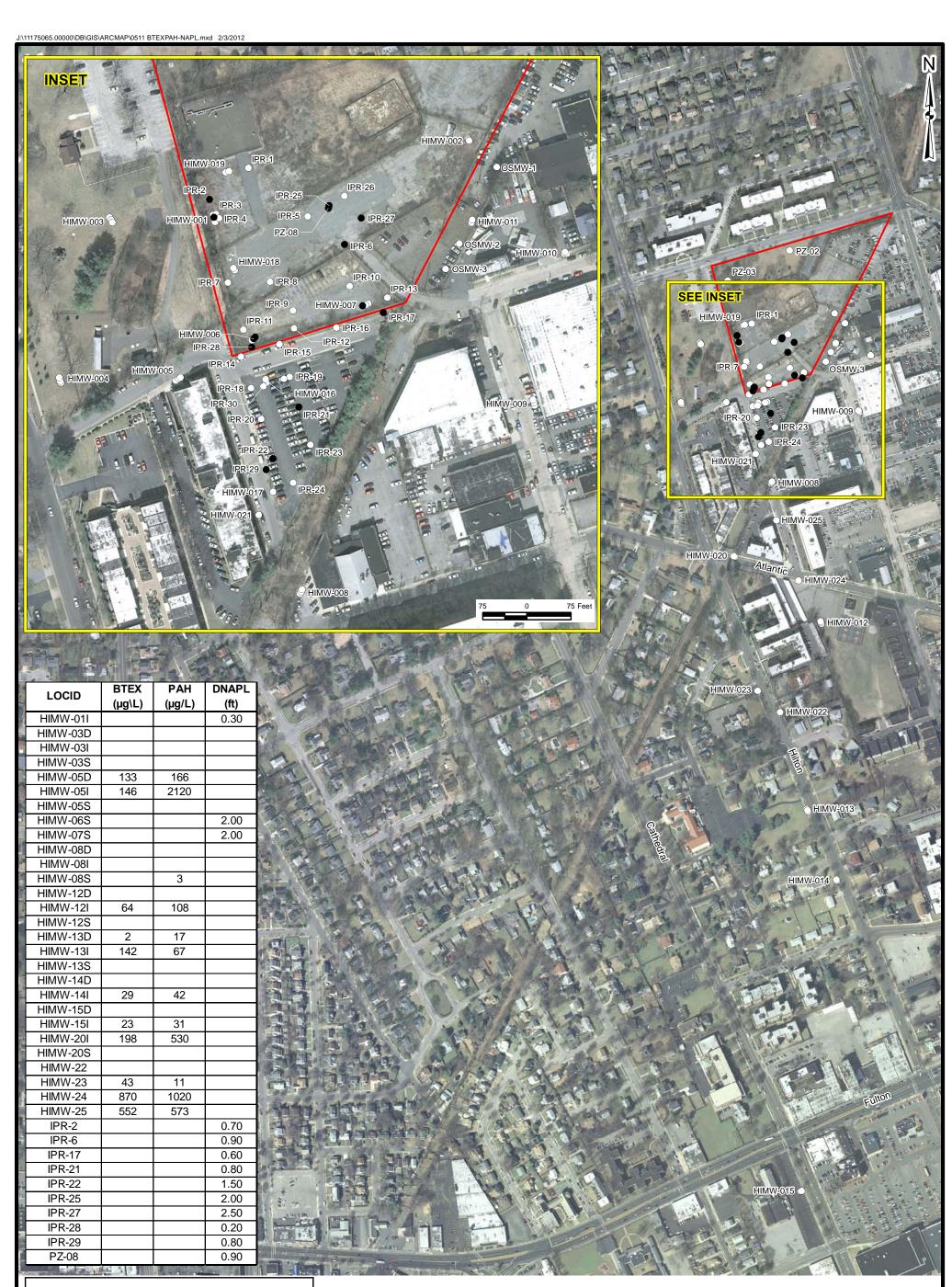




URS

Legend

- Monitoring Well Product Detected
- Monitoring Well Product Not Detected


Former MGP Site Boundary

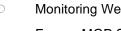
Notes:

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes
PAH - Polynuclear Aromatic Hydrocarbons
DNAPL - Dense Non-Aqueous Phase Liquid
LNAPL - Light Non-Aqueous Phase Liquid
µg/L - Micrograms per Liter
ft - Feet of Product Thickness

Legend

- Monitoring Well Product Detected
- Monitoring Well Product Not Detected

Former MGP Site Boundary


Notes:

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes
PAH - Polynuclear Aromatic Hydrocarbons
DNAPL - Dense Non-Aqueous Phase Liquid
LNAPL - Light Non-Aqueous Phase Liquid
µg/L - Micrograms per Liter
ft - Feet of Product Thickness

400 Feet

- Monitoring Well Product Not Detected

Former MGP Site Boundary

DNAPL - Dense Non-Aqueous Phase Liquid
LNAPL - Light Non-Aqueous Phase Liquid
ug/L - Micrograms per Liter
ft - Feet of Product Thickness
NAPL thickness for all wells measured on 01/20/11
BTEX/PAH sampling occurred on 02/01/11 - 02/08/11

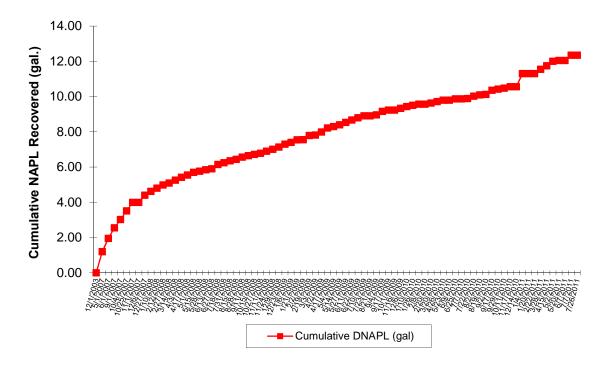


FIGURE 12A
Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

FIGURE 12B
Well HIMW-01I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

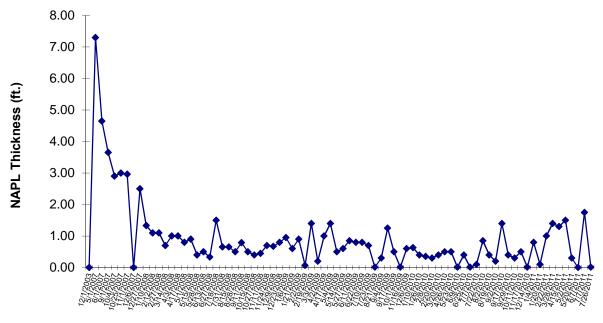
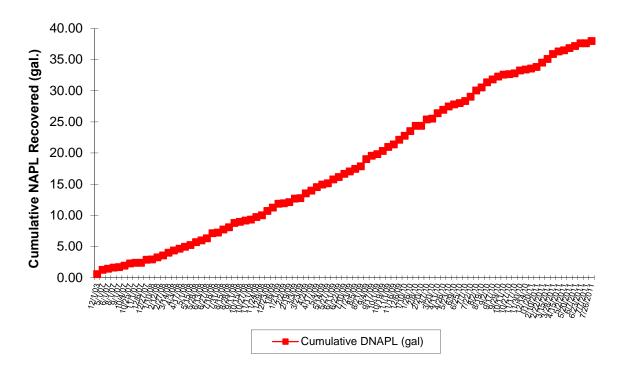



FIGURE 12C
Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

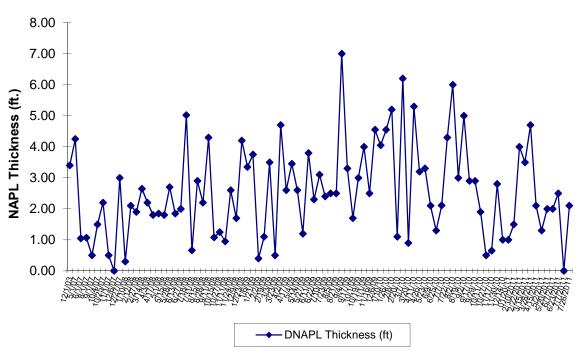
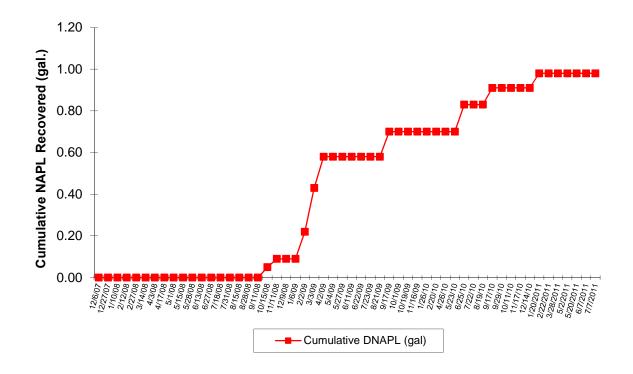



FIGURE 12D
Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

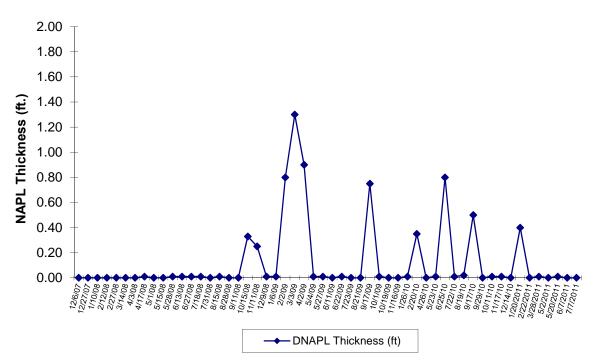
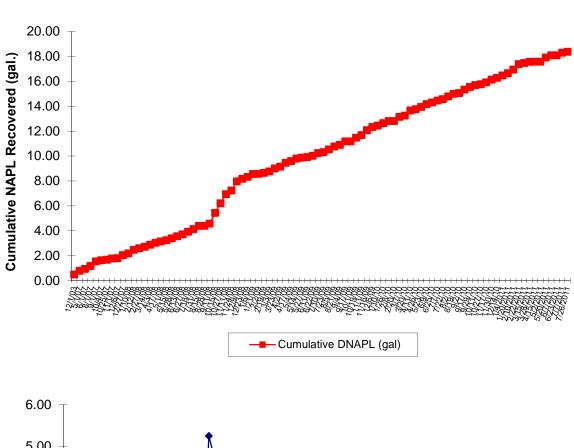



FIGURE 12E
Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

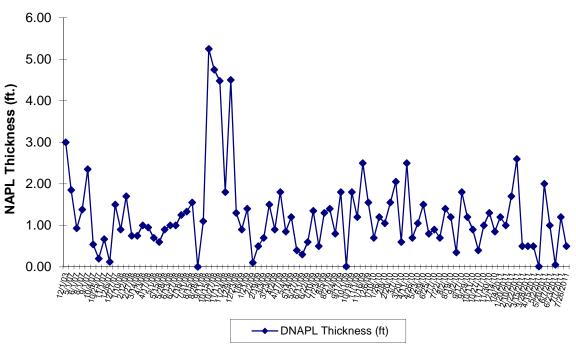


FIGURE 12F
Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

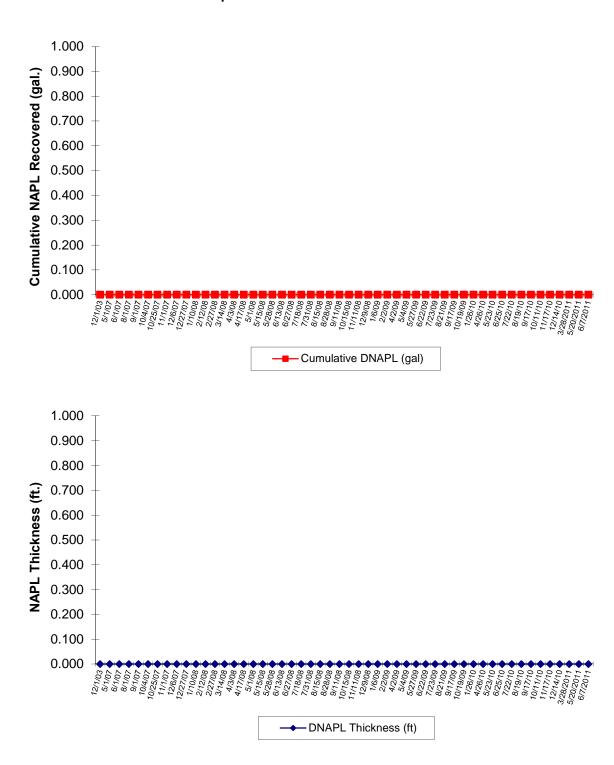
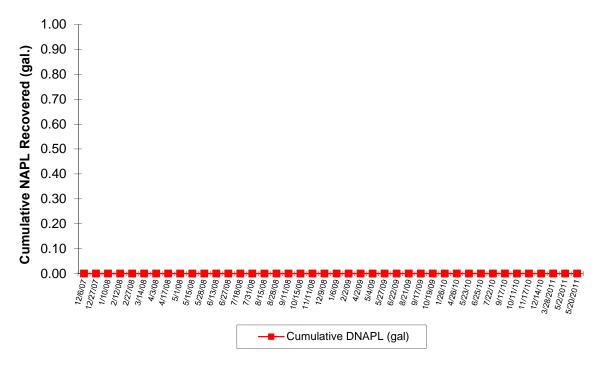



FIGURE 12G
Well HIMW-11I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

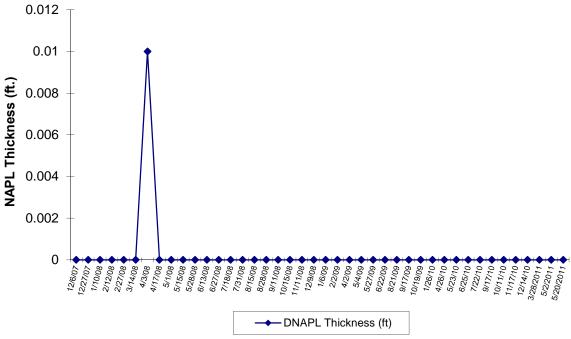
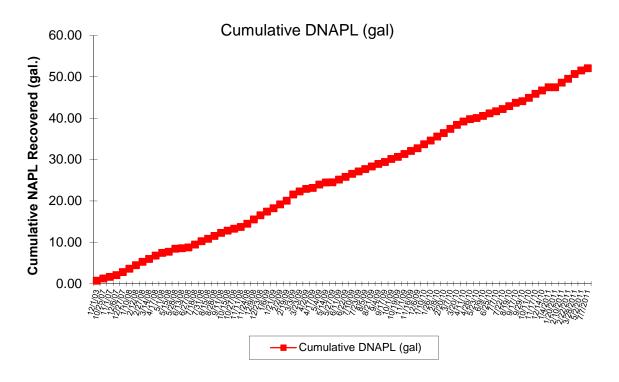



FIGURE 12H
Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

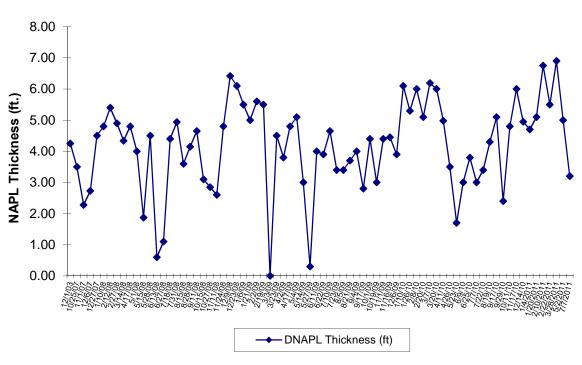
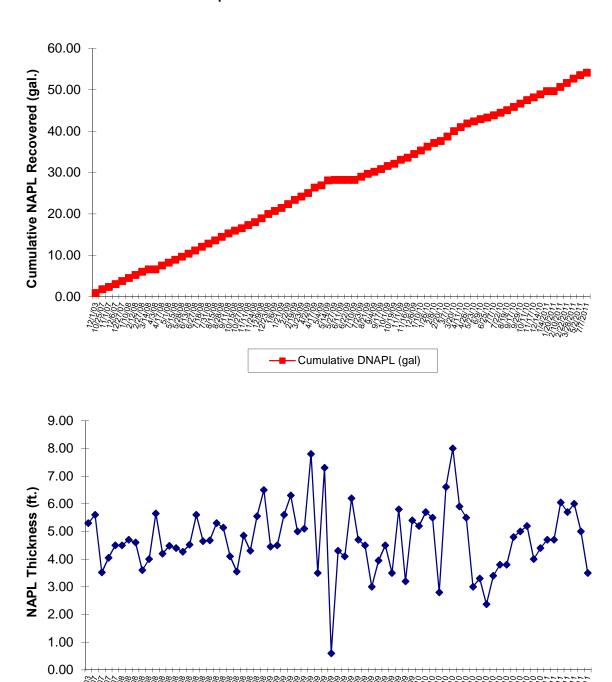
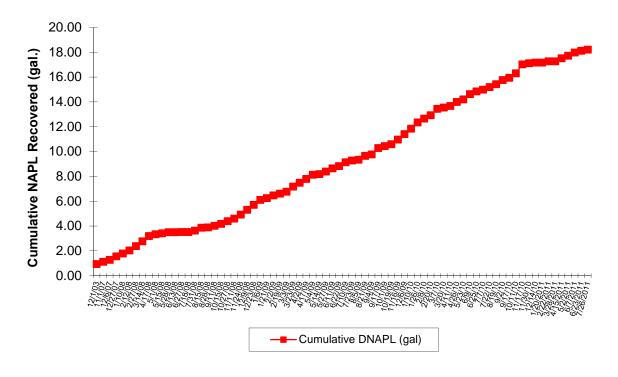




FIGURE 12I
Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

- DNAPL Thickness (ft)

FIGURE 12J
Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

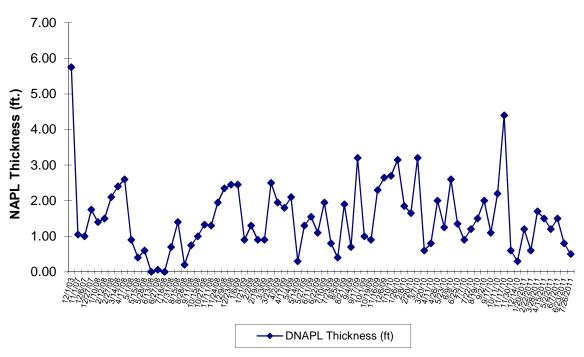
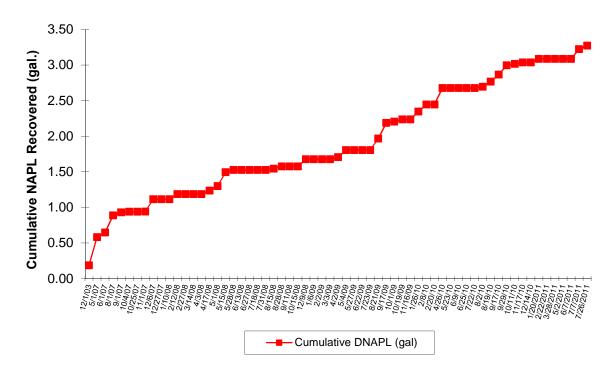



FIGURE 12K
Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

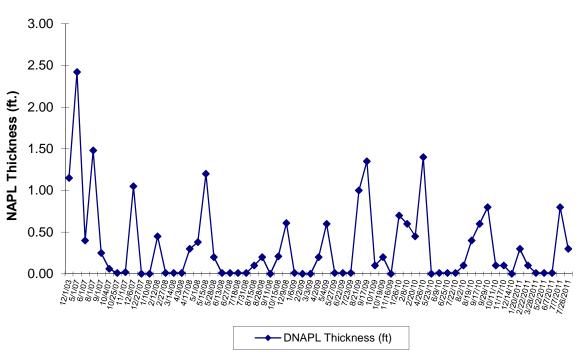
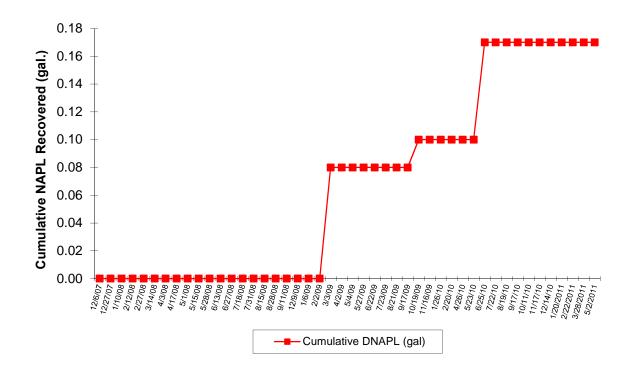



FIGURE 12L
Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

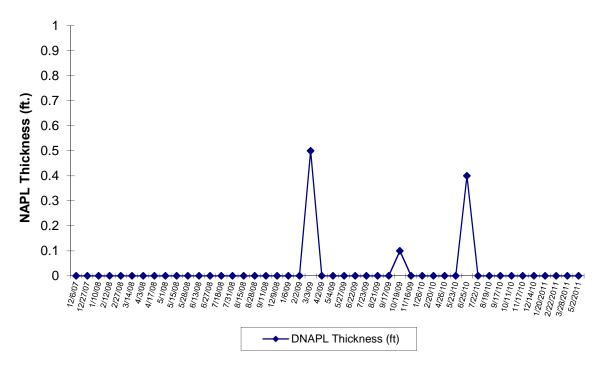
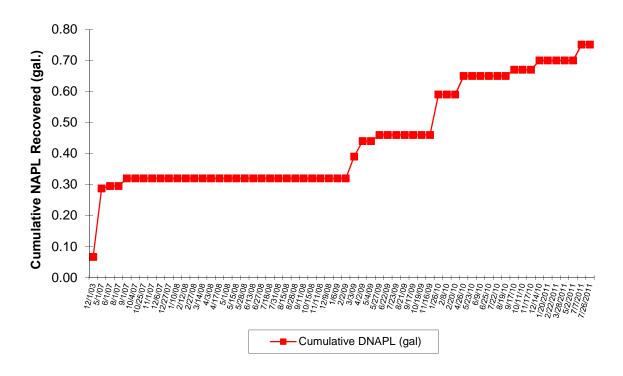



FIGURE 12M
Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

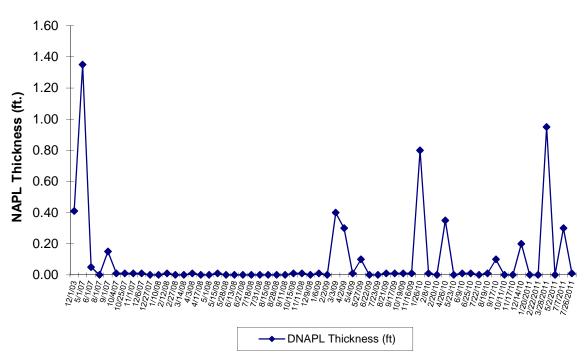
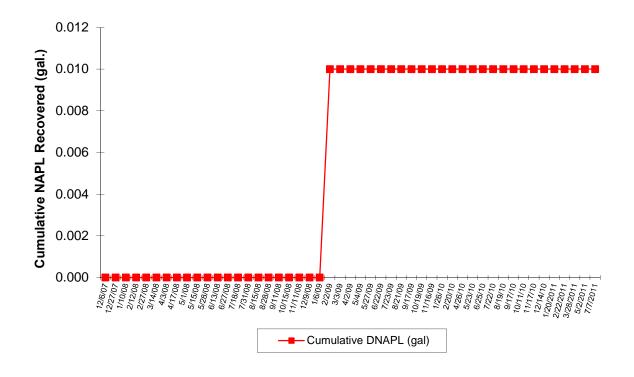



FIGURE 12N
Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

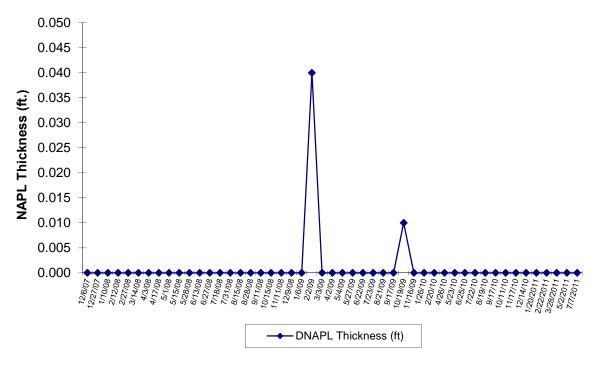
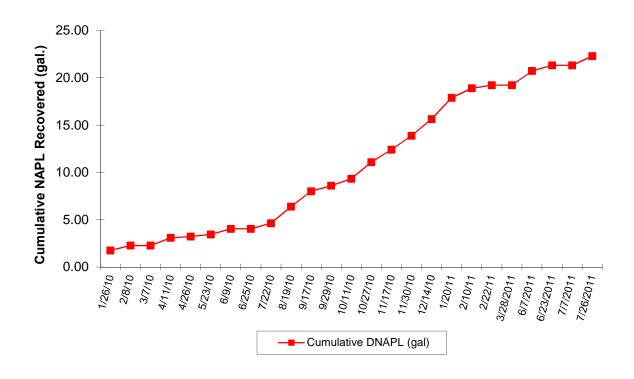



FIGURE 120
Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

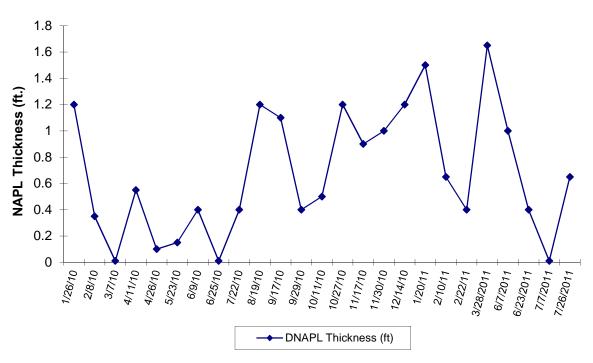


FIGURE 12P
Well PZ-08 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

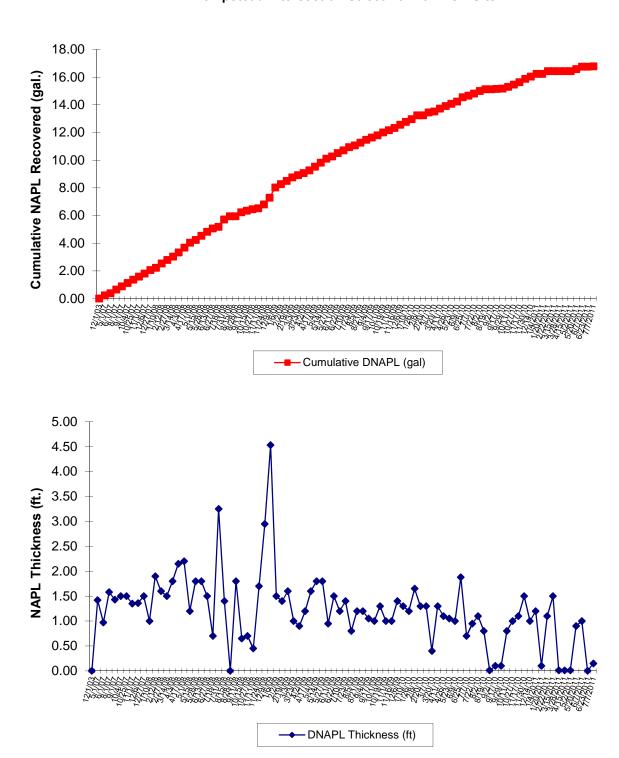


FIGURE 12Q
Well IPR-02 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

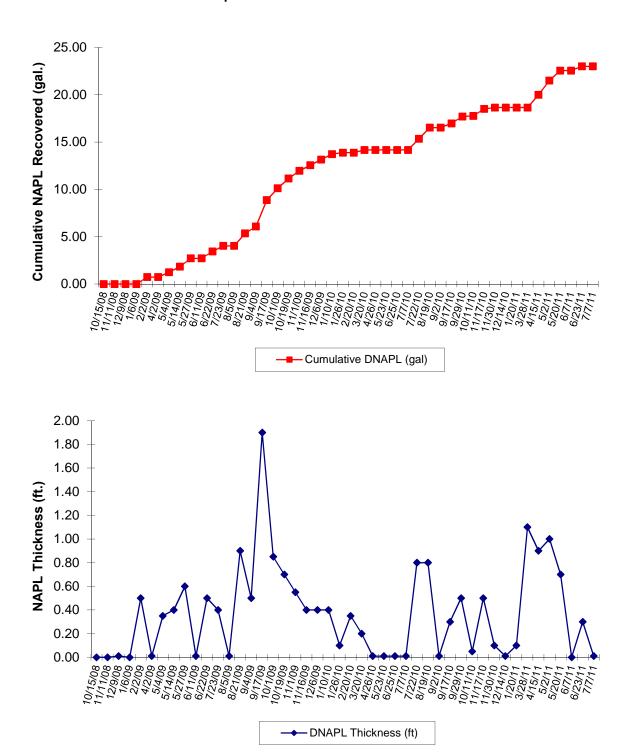
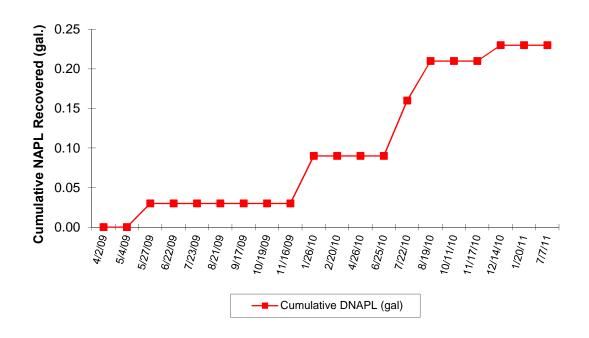



FIGURE 12R
Well IPR-05 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

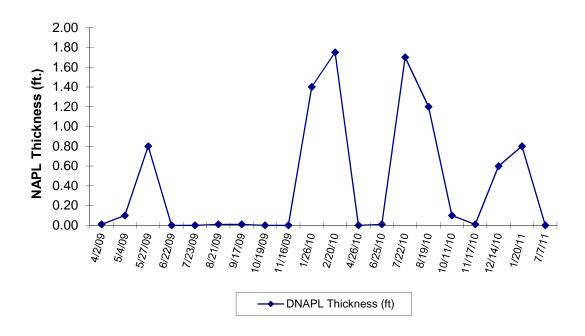
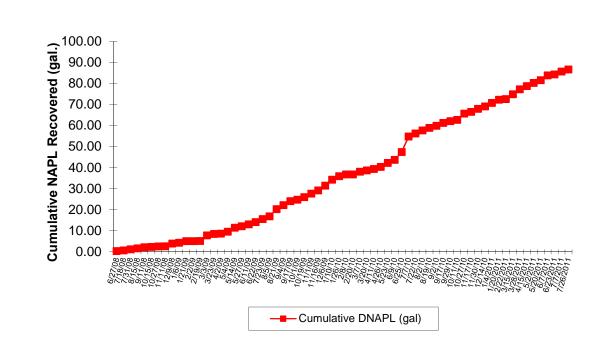



FIGURE 12S
Well IPR-06 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

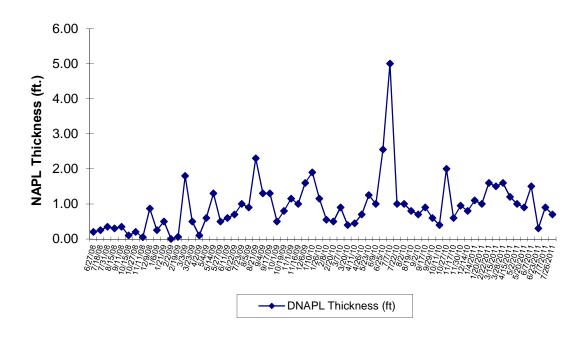
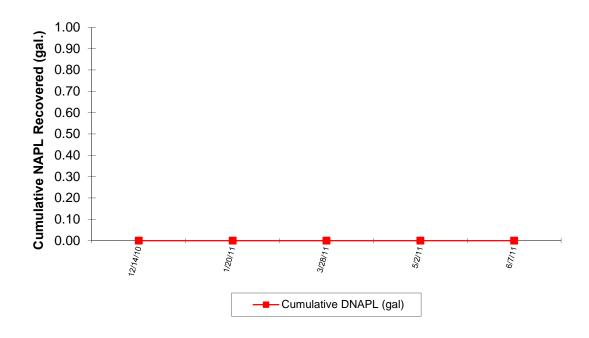



FIGURE 12T
Well IPR-07 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

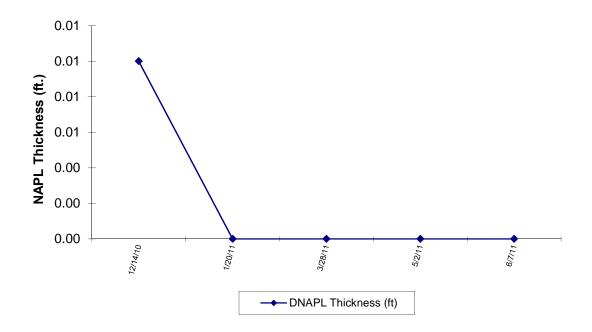
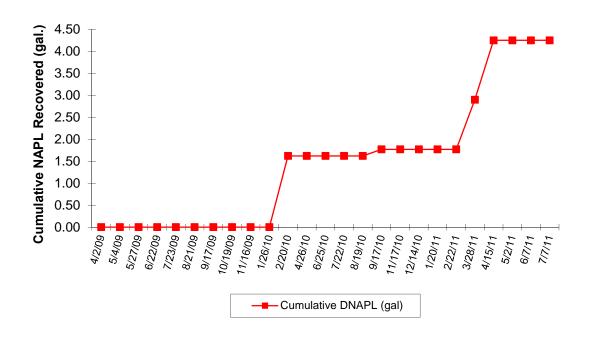



FIGURE 12U
Well IPR-09 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

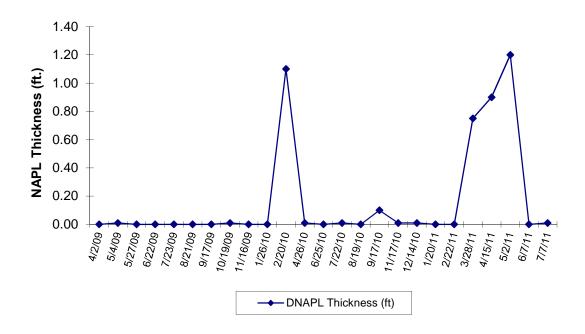



FIGURE 12V
Well IPR-12A NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

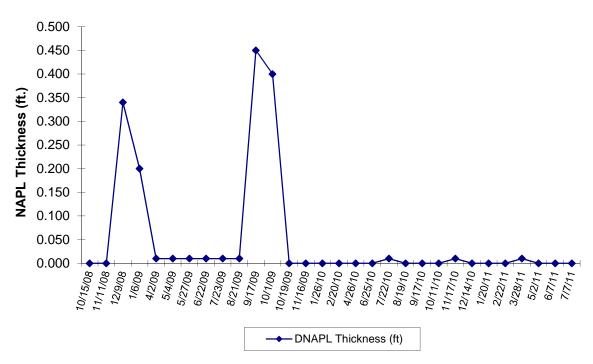
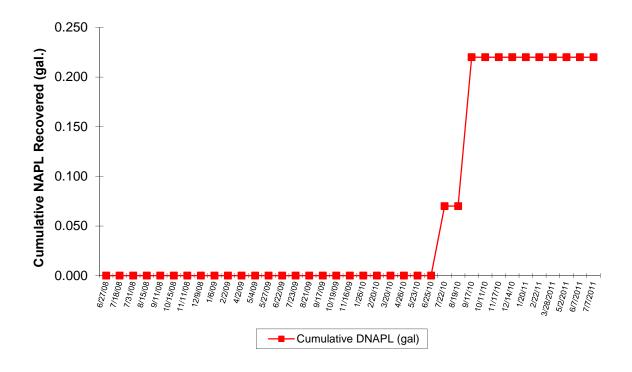



FIGURE 12W
Well IPR-15 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

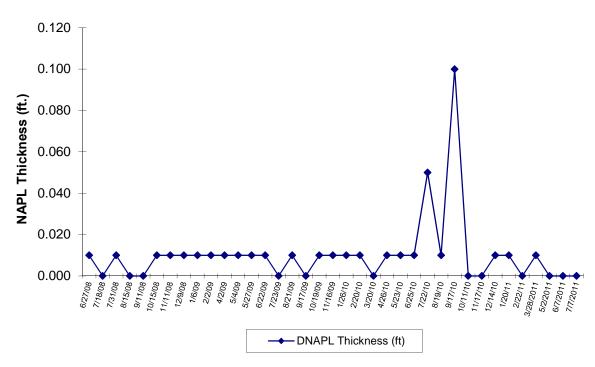
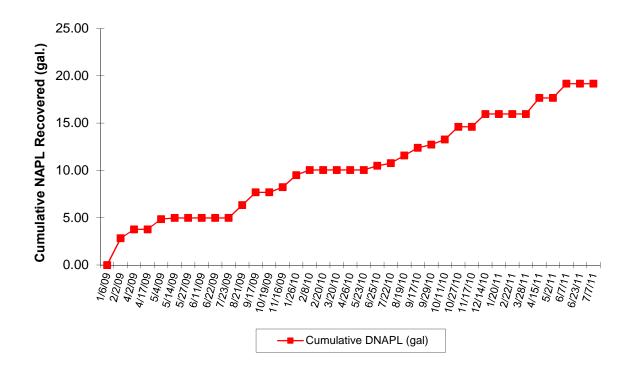



FIGURE 12X
Well IPR-16 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

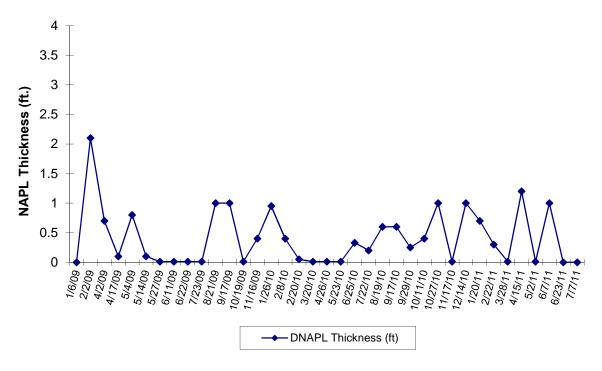
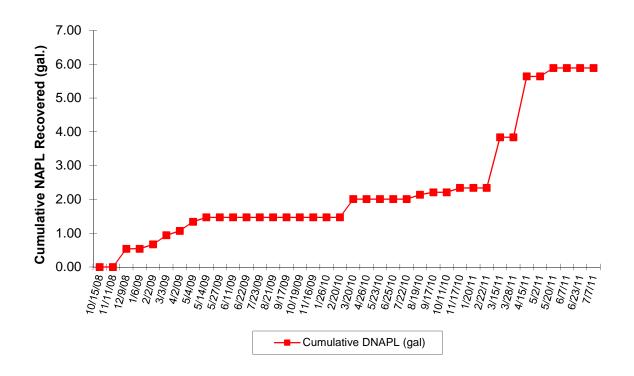



FIGURE 12Y
Well IPR-17 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

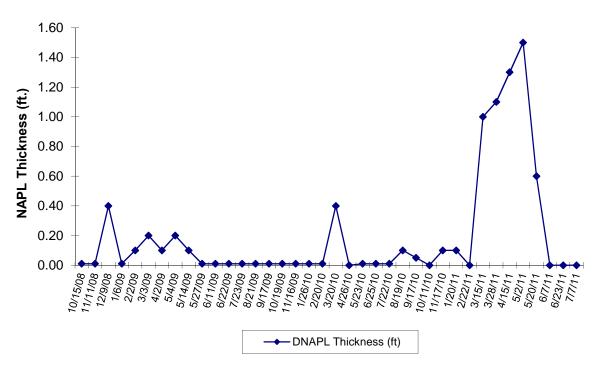
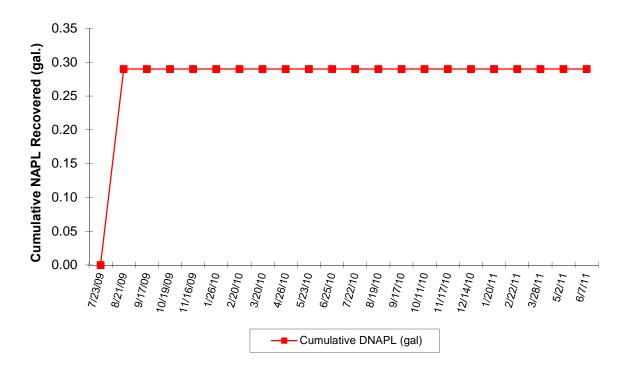



FIGURE 12Z
Well IPR-18 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

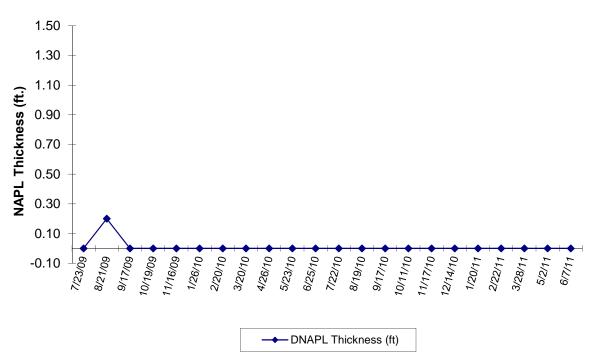
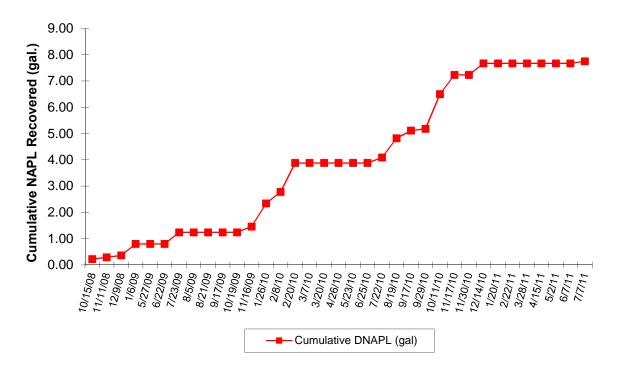



FIGURE 12AA
Well IPR-20 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

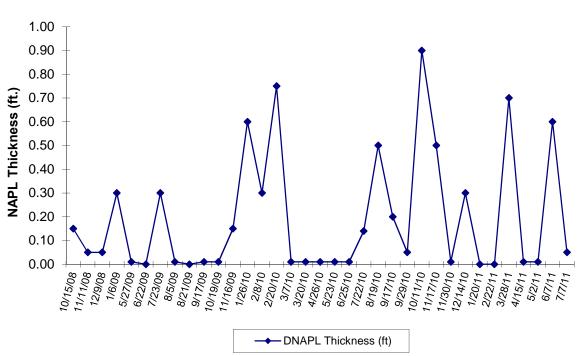
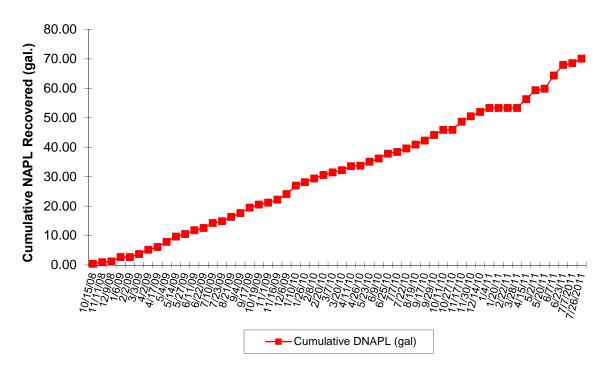



FIGURE 12AB
Well IPR-21 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

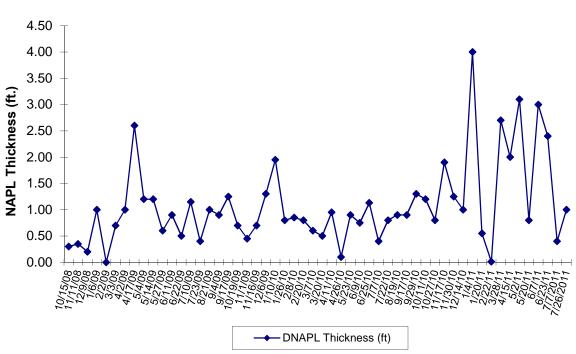
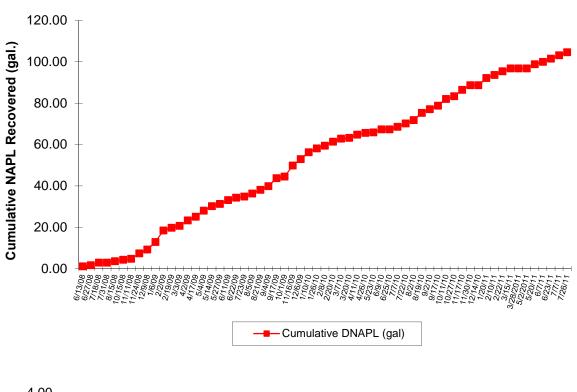



FIGURE 12AC
Well IPR-22 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

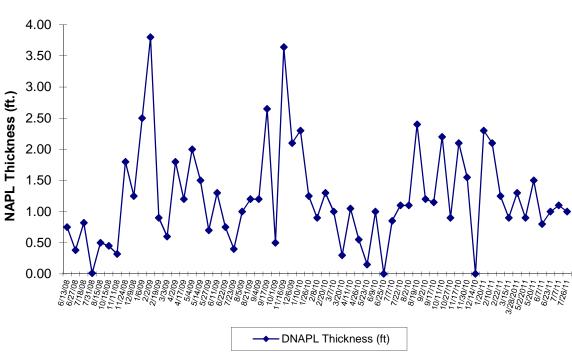
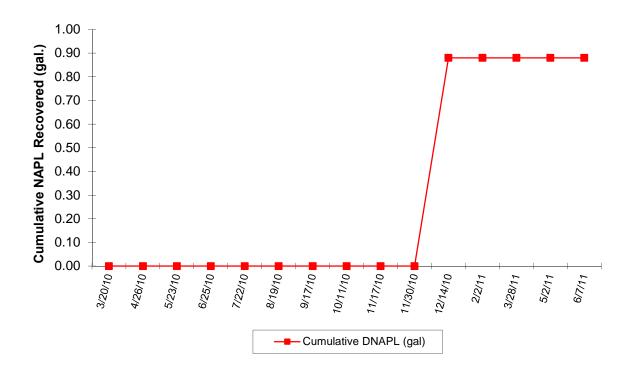



FIGURE 12AD
Well IPR- 23 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

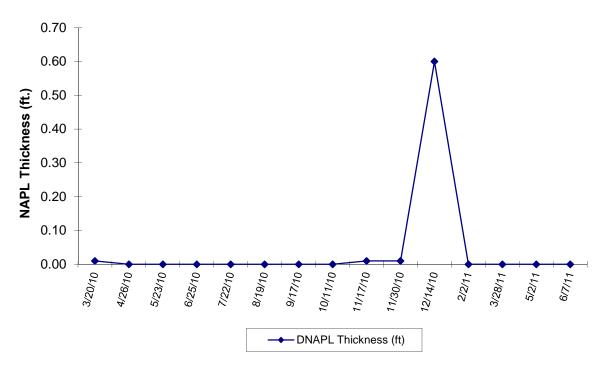
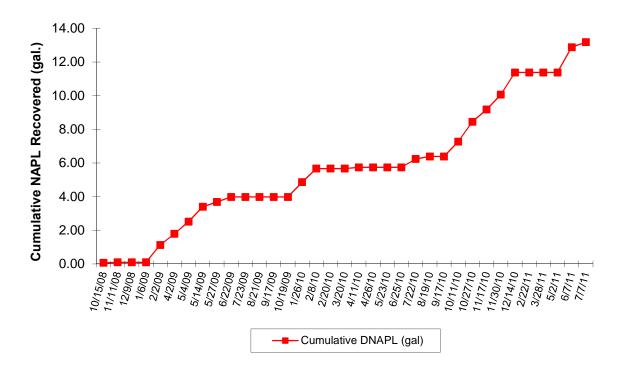



FIGURE 12AE
Well IPR-24 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

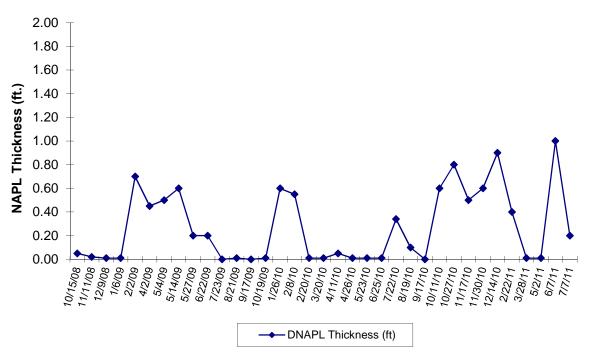
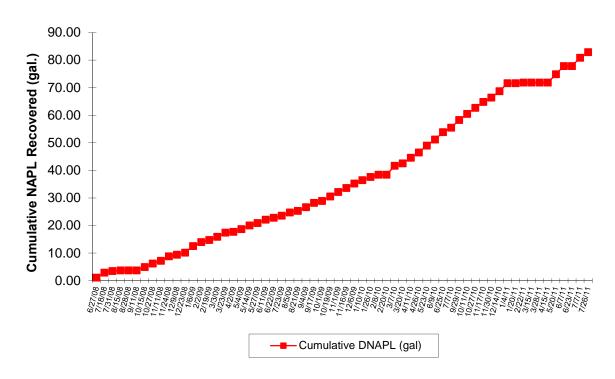



FIGURE 12AF
Well IPR-25 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

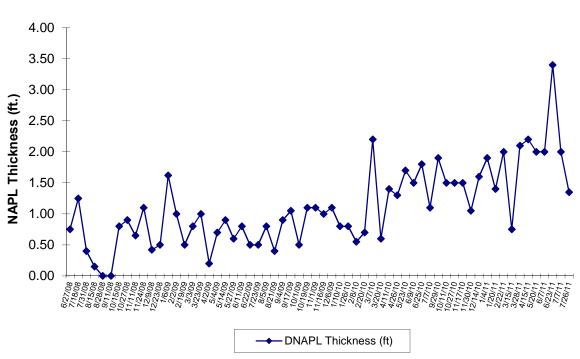
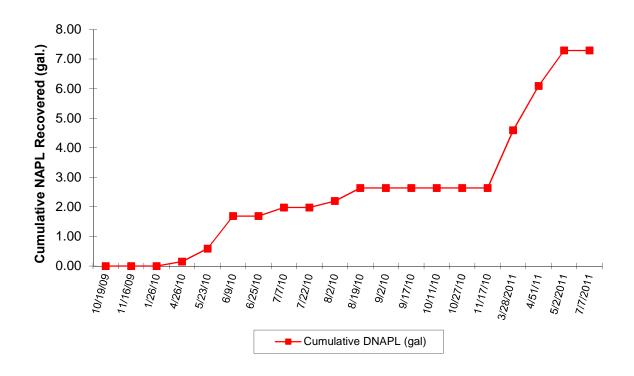



FIGURE 12AG
Well IPR-26 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

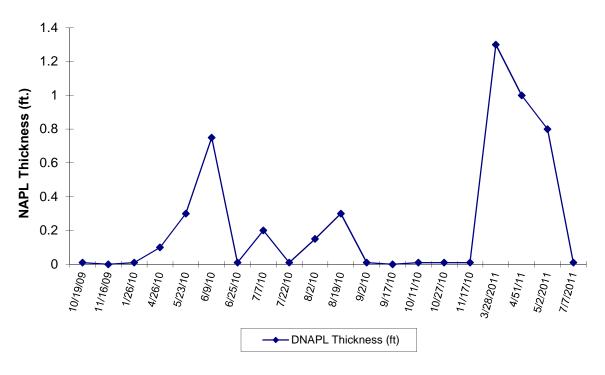
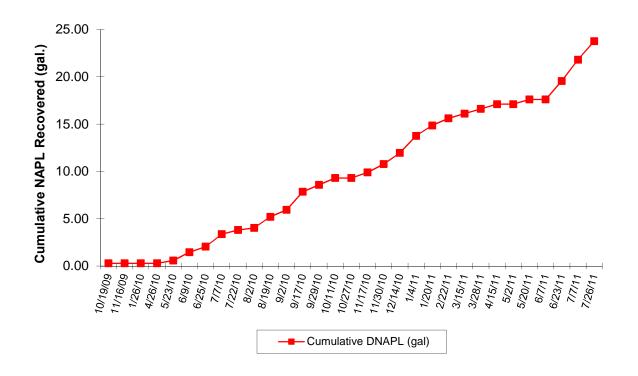



FIGURE 12AH
Well IPR-27 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

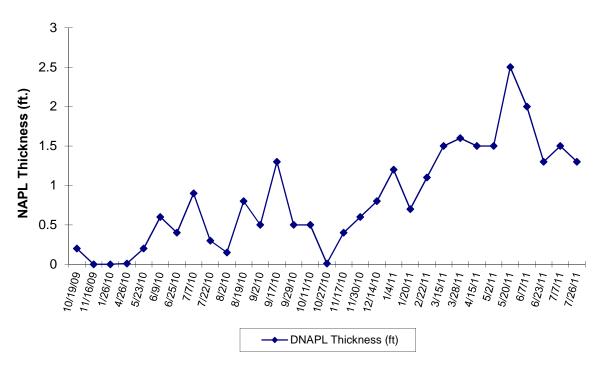
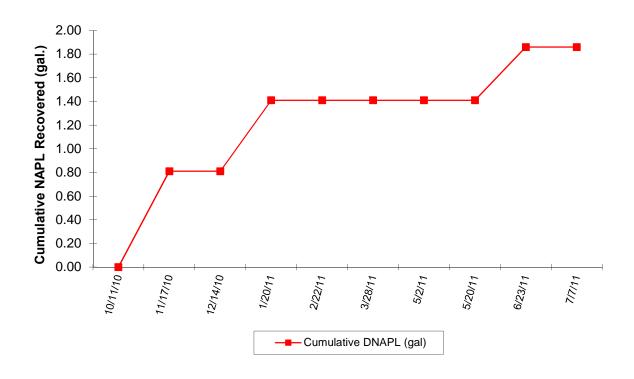



FIGURE 12AI
Well IPR-28 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

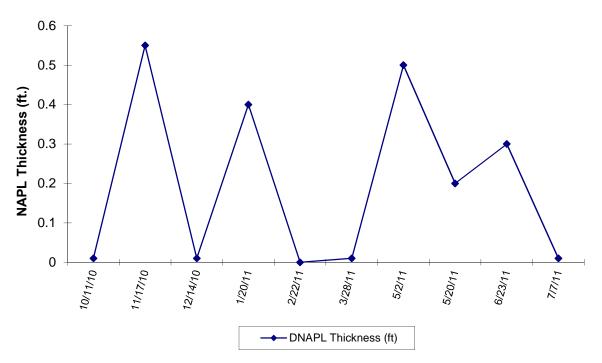
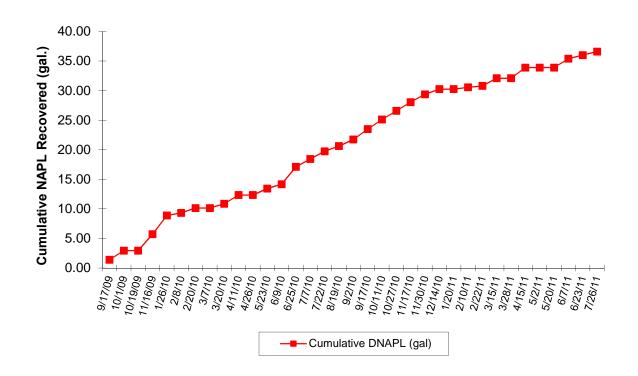



FIGURE 12AJ
Well IPR-29 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

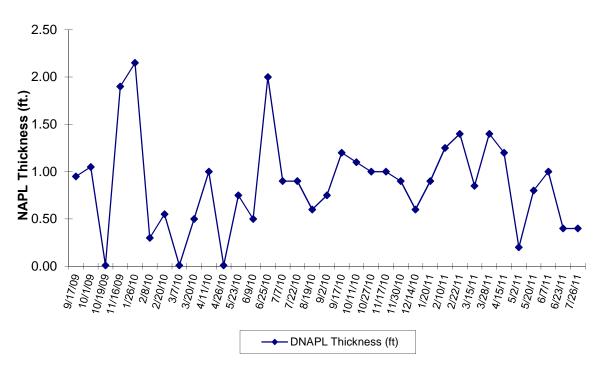
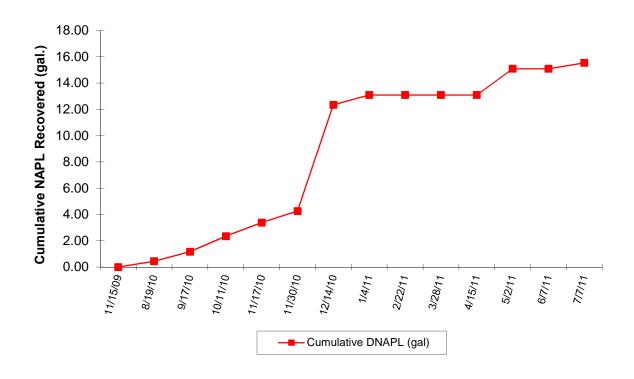
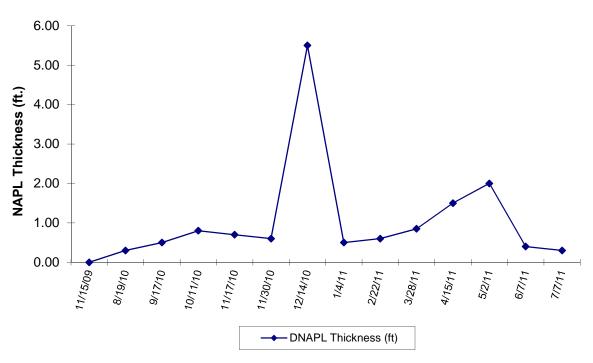




FIGURE 12AK
Well IPR-30 NAPL Thickness and Cumulative Recovery Plot
Hempstead Intersection Street Former MGP Site

APPENDIX A DATA USABILITY SUMMARY REPORT

(Provided in Electronic Format Only)

APPENDIX A DATA USABILITY SUMMARY REPORT FOURTH QUARTER 2011

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE VILLAGES OF GARDEN CITY AND HEMPSTEAD LONG ISLAND, NEW YORK

Analyses Performed by: H2M LABORATORIES, INC.

Prepared For:

NATIONAL GRID

175 EAST OLD COUNTRY RD.

HICKSVILLE, NY 11801

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

TABLE OF CONTENTS

	Page No.
I.	INTRODUCTION A-1
II.	ANALYTICAL METHODOLOGIES AND DATA VALIDATION A-1
III.	DATA DELIVERABLE COMPLETENESS
IV.	SAMPLE RECEIPT/HOLDING TIMES
V.	NON-CONFORMANCES
VI.	SAMPLE RESULTS AND REPORTING
VII.	SUMMARY A-3
	TABLES (Following Text)
Table A	A-1 Validated Groundwater Sample Analytical Results
Table A	A-2 Validated Field QC Sample Analytical Results
	APPENDICES (Following Tables)
Attachr	ment A Validated Form 1's
Attachr	ment B Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, *Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports*, May 2010.

Analytical data for twenty-five (25) groundwater samples, two (2) field duplicates, one (1) matrix spike/matrix spike duplicate (MS/MSD) pair, one (1) field blank, and eight (8) trip blanks collected by URS personnel from December 14-28, 2011 are discussed in this DUSR. The samples were collected as part of the 2011 fourth quarter groundwater monitoring event at the Hempstead Intersection Street Former MGP Site.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

The samples were analyzed by H2M Laboratories, Inc. (Melville, NY) for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) USEPA Method SW8260B, and
- Polynuclear aromatic hydrocarbons (PAHs) USEPA Method SW8270C.

A limited data validation was performed on the samples in accordance with the guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008; and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

The limited data validation included a review of completeness of all required deliverables; holding times; quality control (QC) results (i.e., instrument tunes, calibration standards, blanks, matrix spike recoveries, field duplicate analyses, laboratory control sample recoveries, and surrogate/internal standard recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Qualifications applied to the data during the data validation process include 'J' (estimated) and 'UJ' (estimated quantitation limit). The validated analytical results are presented in Tables A-1 and A-2. Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Copies of the chain-of-custodies (COC), case narratives, and documentation supporting the qualification of data are presented in Attachment B. Only problems affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper COC, except for the following instances, where qualification of the data was not necessary.

• The cooler temperatures associated with several of the groundwater samples were above 6°C, because there was insufficient time for the affected samples to cool down during transit to the laboratory. The lab noted that ice was present in the coolers. The samples arrived at the laboratory within 1-3 hours of being relinquished by the field technician to the lab courier.

The bottle labels for sample HIMW-014I did not match the COC. It was incorrectly
documented on the COC as HIMW-014D, whereupon, the lab revised the sample ID
accordingly.

All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

For PAH analyses, the percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the RRF in the continuing calibration (CCAL) standard was greater than 20.0% for chrysene. The non-detect chrysene results for samples HIMW-03D, -03I, -03S, -08D, -08I, -08S, and FB122811 were qualified 'UJ'.

Documentation supporting the qualification of data (i.e., Forms 5 and 7) is presented in Attachment B.

VI. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample size and dilution factors. BTEX and PAH results detected below the quantitation limits were qualified 'J' by the laboratory. The results reported from secondary dilution analyses were qualified 'D' by the laboratory.

Field duplicates were collected from monitoring well locations HIMW-14I (DUP-121411) and HIMW-024 (DUP-121911), which exhibited acceptable field and analytical precision.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, and the data are usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By:	Peter R. Fairbanks, Senior Chemist	Date: 3/9/12
Reviewed By:	George E. Kisluk, Senior Chemist	Date: 3/9/12

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Location ID			HIMW-003D	HIMW-003I	HIMW-003S	HIMW-005D	HIMW-005I
Sample ID			HIMW-03D	HIMW-03I	HIMW-03S	HIMW-05D	HIMW-05I
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			40/00/44	40/00/44	-	40/00/44	-
Date Sampled		1	12/20/11	12/20/11	12/20/11	12/22/11	12/21/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1 U	3
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	2
Toluene	UG/L	-	1 U	1 U	1 U	2	1
Xylene (total)	UG/L	-	1 U	1 U	1 U	180	120
Total BTEX	UG/L	100	ND	ND	ND	182	126
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	10 U	10 U	10 U	110 D	390 DJ
Acenaphthene	UG/L	-	10 U	10 U	10 U	3 J	14
Acenaphthylene	UG/L	-	10 U	10 U	10 U	45	190 DJ
Anthracene	UG/L	=	10 U	10 U	10 U	10 U	2 J
Benzo(a)anthracene	UG/L	=	10 U				
Benzo(a)pyrene	UG/L	-	10 U				
Benzo(b)fluoranthene	UG/L	-	10 U				
Benzo(g,h,i)perylene	UG/L	-	10 U				
Benzo(k)fluoranthene	UG/L	-	10 U				
Chrysene	UG/L	-	10 UJ	10 UJ	10 UJ	10 U	10 U
Dibenz(a,h)anthracene	UG/L	-	10 U				
Fluoranthene	UG/L	-	10 U				
Fluorene	UG/L	-	10 U	10 U	10 U	6 J	33
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U				
Naphthalene	UG/L	-	10 U	10 U	10 U	380 D	2,000 D
Phenanthrene	UG/L	-	10 U	10 U	10 U	10 U	19
Pyrene	UG/L	-	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	544	2,648

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \textbf{U} \textbf{ - Not detected above the reported quantitation limit. } \textbf{J} \textbf{ - The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID			HIMW-005S	HIMW-008D	HIMW-008I	HIMW-008S	HIMW-012D
Sample ID			HIMW-05S	HIMW-08D	HIMW-08I	HIMW-08S	HIMW-12D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (fi	:)		-	-	-	-	-
Date Sampled			12/21/11	12/28/11	12/28/11	12/28/11	12/16/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	-	1 U	1 U	1 U	1 U	1 U
Total BTEX	UG/L	100	ND	ND	ND	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	10 U				
Acenaphthene	UG/L	-	10 U				
Acenaphthylene	UG/L	-	10 U	10 U	10 U	3 J	10 U
Anthracene	UG/L	-	10 U	10 U	10 U	1 J	10 U
Benzo(a)anthracene	UG/L	-	10 U				
Benzo(a)pyrene	UG/L	-	10 U				
Benzo(b)fluoranthene	UG/L	-	10 U				
Benzo(g,h,i)perylene	UG/L	-	10 U				
Benzo(k)fluoranthene	UG/L	-	10 U				
Chrysene	UG/L	-	10 U	10 UJ	10 UJ	10 UJ	10 U
Dibenz(a,h)anthracene	UG/L	-	10 U				
Fluoranthene	UG/L	-	10 U				
Fluorene	UG/L	-	10 U				
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U				
Naphthalene	UG/L	-	10 U				
Phenanthrene	UG/L	-	10 U				
Pyrene	UG/L	-	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	4	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \textbf{U} \textbf{ - Not detected above the reported quantitation limit. } \textbf{J} \textbf{ - The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID			HIMW-012I	HIMW-012S	HIMW-013D	HIMW-013I	HIMW-013S
Sample ID			HIMW-12I	HIMW-12S	HIMW-13D	HIMW-13I	HIMW-13S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (fi	t)		-	-	-	-	-
Date Sampled			12/16/11	12/16/11	12/14/11	12/14/11	12/14/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	53	1 U	3	23	1 U
Ethylbenzene	UG/L	-	3	1 U	1 U	1 U	1 U
Toluene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	-	7	1 U	2	4	1 U
Total BTEX	UG/L	100	63	ND	5	27	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	10 U				
Acenaphthene	UG/L	-	56	10 U	5 J	5 J	10 U
Acenaphthylene	UG/L	-	59	10 U	9 J	35	10 U
Anthracene	UG/L	-	2 J	10 U	10 U	1 J	10 U
Benzo(a)anthracene	UG/L	-	10 U				
Benzo(a)pyrene	UG/L	-	10 U				
Benzo(b)fluoranthene	UG/L	-	10 U				
Benzo(g,h,i)perylene	UG/L	-	10 U				
Benzo(k)fluoranthene	UG/L	-	10 U				
Chrysene	UG/L	-	10 U				
Dibenz(a,h)anthracene	UG/L	-	10 U				
Fluoranthene	UG/L	-	10 U				
Fluorene	UG/L	-	31	10 U	10 U	9 J	10 U
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U				
Naphthalene	UG/L	-	7 J	10 U	10 U	10 U	10 U
Phenanthrene	UG/L	-	11	10 U	10 U	12	10 U
Pyrene	UG/L	-	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	166	ND	14	62	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \textbf{U} \textbf{ - Not detected above the reported quantitation limit. } \textbf{J} \textbf{ - The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID			HIMW-014D	HIMW-014I	HIMW-014I	HIMW-015D	HIMW-015I
Sample ID			HIMW-14D	DUP-121411	HIMW-14I	HIMW-15D	HIMW-15I
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled		,	12/15/11	12/14/11	12/14/11	12/15/11	12/15/11
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	18	19	1 U	22
Ethylbenzene	UG/L	-	1 U	4	5	1 U	1 U
Toluene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	-	1 U	4	4	1 U	2
Total BTEX	UG/L	100	ND	26	28	ND	24
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Acenaphthene	UG/L	-	10 U	19	18	10 U	7 J
Acenaphthylene	UG/L	-	10 U	22	22	10 U	27
Anthracene	UG/L	-	10 U	1 J	1 J	10 U	10 U
Benzo(a)anthracene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Fluorene	UG/L	-	10 U	8 J	9 J	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Phenanthrene	UG/L	-	10 U	8 J	8 J	10 U	10 U
Pyrene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	58	58	ND	34

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \mbox{U-Not detected above the reported quantitation limit. } \mbox{J-The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID			HIMW-020I	HIMW-020S	HIMW-022	HIMW-023	HIMW-024
Sample ID			HIMW-20I	HIMW-20S	HIMW-22	HIMW-23	DUP121911
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft	t)		-	-	-	-	-
Date Sampled			12/21/11	12/22/11	12/19/11	12/19/11	12/19/11
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1	320 D
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	43
Toluene	UG/L	-	1 U	1 U	1 U	1 U	38
Xylene (total)	UG/L	-	1	1 U	1	1 U	280
Total BTEX	UG/L	100	1	ND	1	1	681
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	10 U	10 U	10 U	10 U	16
Acenaphthene	UG/L	-	10 U	10 U	10 U	10 U	26
Acenaphthylene	UG/L	-	10 U	10 U	10 U	10 U	31
Anthracene	UG/L	-	10 U	10 U	10 U	10 U	1 J
Benzo(a)anthracene	UG/L	-	10 U				
Benzo(a)pyrene	UG/L	-	10 U				
Benzo(b)fluoranthene	UG/L	-	10 U				
Benzo(g,h,i)perylene	UG/L	-	10 U				
Benzo(k)fluoranthene	UG/L	-	10 U				
Chrysene	UG/L	-	10 U				
Dibenz(a,h)anthracene	UG/L	-	10 U				
Fluoranthene	UG/L	-	10 U				
Fluorene	UG/L	-	10 U	10 U	10 U	10 U	4 J
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U				
Naphthalene	UG/L	-	10 U	10 U	10 U	10 U	530 D
Phenanthrene	UG/L	-	10 U	10 U	10 U	10 U	9 J
Pyrene	UG/L	-	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	ND	617

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \textbf{U} \textbf{ - Not detected above the reported quantitation limit. } \textbf{J} \textbf{ - The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID	HIMW-024	HIMW-025			
Sample ID			HIMW-24	HIMW-25 Groundwater -	
Matrix			Groundwater		
Depth Interval (f	t)		-		
Date Sampled			12/19/11	12/19/11	
Parameter	Units	Criteria*			
Volatile Organic Compounds					
Benzene	UG/L	-	320 D	1 U	
Ethylbenzene	UG/L	-	43	2	
Toluene	UG/L	-	38	2	
Xylene (total)	UG/L	-	270	6	
Total BTEX	UG/L	100	671	10	
Semivolatile Organic Compounds					
2-Methylnaphthalene	UG/L	-	16	10 U	
Acenaphthene	UG/L	-	26	10 U	
Acenaphthylene	UG/L	-	35	10 U	
Anthracene	UG/L	-	1 J	10 U	
Benzo(a)anthracene	UG/L	-	10 U	10 U	
Benzo(a)pyrene	UG/L	-	10 U	10 U	
Benzo(b)fluoranthene	UG/L	-	10 U	10 U	
Benzo(g,h,i)perylene	UG/L	-	10 U	10 U	
Benzo(k)fluoranthene	UG/L	-	10 U	10 U	
Chrysene	UG/L	-	10 U	10 U	
Dibenz(a,h)anthracene	UG/L	-	10 U	10 U	
Fluoranthene	UG/L	-	10 U	10 U	
Fluorene	UG/L	-	4 J	10 U	
ndeno(1,2,3-cd)pyrene	UG/L	-	10 U	10 U	
Naphthalene	UG/L	-	700 D	10 U	
Phenanthrene	UG/L	-	10	10 U	
Pyrene	UG/L	-	10 U	10 U	
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	792	ND	

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]label{eq:concentration} \textbf{U} \textbf{ - Not detected above the reported quantitation limit. } \textbf{J} \textbf{ - The reported concentration is an estimated value.}$

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

D - Result reported from a secondary dilution analysis. ND - Not detected.

Location ID			FIELDQC	FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID			TB-121411	TB-121511	TB-121611	TB121911	TB122011
Matrix			Water Quality				
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			12/14/11	12/15/11	12/16/11	12/19/11	12/20/11
Parameter	Units	Criteria*	Trip Blank (1-1)				
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	-	1 U	1 U	1 U	1 U	1 U
Total BTEX	UG/L	100	ND	ND	ND	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	NA	NA	NA	NA	NA
Acenaphthene	UG/L	-	NA	NA	NA	NA	NA
Acenaphthylene	UG/L	-	NA	NA	NA	NA	NA
Anthracene	UG/L	-	NA	NA	NA	NA	NA
Benzo(a)anthracene	UG/L	-	NA	NA	NA	NA	NA
Benzo(a)pyrene	UG/L	-	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	UG/L	-	NA	NA NA	NA NA	NA	NA
Benzo(g,h,i)perylene	UG/L	-	NA	NA NA	NA NA	NA NA	NA
Benzo(k)fluoranthene	UG/L	-	NA	NA NA	NA NA	NA NA	NA NA
Chrysene Dibana(a b) anthroppe	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene Fluoranthene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene	UG/L	-	NA NA	NA NA	NA NA	NA NA	NA NA
Total Polynuclear Aromatic	UG/L	100	NA NA	NA NA	NA NA	NA NA	NA NA
Hydrocarbons	UG/L	130		141	.01		

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]ensuremath{\mathsf{U}}$ - Not detected above the reported quantitation limit.

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

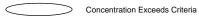

NA - The sample was not analyzed for this parameter. ND - Not detected.

TABLE A-2 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS NATIONAL GRID - HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

Location ID			FIELDQC	FIELDQC	FIELDQC	FIELDQC	
Sample ID			TB-122111	TB-122211	FB122811	TB122811	
Matrix			Water Quality	Water Quality	Water Quality	Water Quality	
Depth Interval (f	t)		-	-	-	-	
Date Sampled	•		12/21/11	12/22/11	12/28/11	12/28/11	
Parameter	Units	Criteria*	Trip Blank (1-1)	Trip Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)	
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1 U	
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	
Toluene	UG/L	-	1 U	1 U	1 U	1 U	
Xylene (total)	UG/L	-	1 U	1 U	1 U	1 U	
Total BTEX	UG/L	100	ND	ND	ND	ND	
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	-	NA	NA	10 U	NA	
Acenaphthene	UG/L	-	NA	NA	10 U	NA	
Acenaphthylene	UG/L	-	NA	NA	10 U	NA	
Anthracene	UG/L	-	NA	NA	10 U	NA	
Benzo(a)anthracene	UG/L	-	NA	NA	10 U	NA	
Benzo(a)pyrene	UG/L	-	NA	NA	10 U	NA	
Benzo(b)fluoranthene	UG/L	-	NA	NA	10 U	NA	
Benzo(g,h,i)perylene	UG/L	-	NA	NA	10 U	NA	
Benzo(k)fluoranthene	UG/L	-	NA	NA	10 U	NA	
Chrysene	UG/L	-	NA	NA	10 UJ	NA	
Dibenz(a,h)anthracene	UG/L	-	NA	NA	10 U	NA	
Fluoranthene	UG/L	-	NA	NA	10 U	NA	
Fluorene	UG/L	-	NA	NA	10 U	NA	
Indeno(1,2,3-cd)pyrene	UG/L	-	NA	NA	10 U	NA	
Naphthalene	UG/L	-	NA	NA	10 U	NA	
Phenanthrene	UG/L	-	NA	NA	10 U	NA	
Pyrene	UG/L	-	NA	NA	10 U	NA	
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	NA	NA	ND	NA	

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

 $[\]ensuremath{\mathsf{UJ}}$ - Not detected. The reported quantitation limit is an estimated value.

NA - The sample was not analyzed for this parameter. ND - Not detected.

Made By_PRF 01/17/12_; Checked By_AMK 01/23/12_

ATTACHMENT A VALIDATED FORM 1'S

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

HIMW-03D

Lab Name:	H2M LABS I	INC	Contra	ot:	
Lab Code:	н2м	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS143
Matrix: (so:	il/water)	WATER		Lab Sample ID:	1112841-001A
Sample wt/v	ol: <u>5</u>	(g/mL)	ML	Lab File ID:	A\A74214.D
Level: (1	ow/med)	LOW		Date Received:	12/20/11
% Moisture:	not dec.			Date Analyzed:	12/22/11
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(pL)	Soil Aliquot Volu	me (μL)

CAS NO.	COMPOUND			or µg/Kg) UG/I		Q
71-43-2				1		U
108-88-3	Trans 48 - 484 (196.) 100 -	1 20 1 20 1 1 6 1 6	Meni g	1	-	Ū.
100-41-4	- The second of the name of the second of				-1	TI

HIMW-03D

Lab Name: H2M LABS I	NC Cont	tract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS143
Matrix: (soil/water)	WATER	Lab Sample ID:	1112841-001B
Sample wt/vol:	1000 (g/mL) <u>ml</u>	Lab File ID:	2\N49431.D
Level: (low/med)	TOM	Date Received:	12/20/11
% Moisture:	Decanted: (Y/N) N	Date Extracted:	12/22/11
Concentrated Extract	Volume: <u>1000</u> (µL)	Date Analyzed:	01/11/12
Injection Volume:	<u>2</u> (µL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type)	CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	r J
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ü
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

117/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-03I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112841-002A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{A} \land 74215.D$

Level: (low/med) LOW Date Received: 12/20/11

% Moisture: not dec. Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L Q
71-43-2	Benzene	1 1 0
108-88-1 100-41-4	y reg incommence with the latter of the latt	1 0
1330-20-	7 Xylene (total)	1 U

SDG No.: KEY-URS143

Lab Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.:

- 1 - 7 - 70 - 1110041 0000

Matrix: (soil/water) WATER Lab Sample ID: 1112841-002B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\text{ml}}$ Lab File ID: $\underline{2N49432.D}$

Level: (low/med) LOW Date Received: 12/20/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/22/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/11/12

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	υ
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	Ü
218-01-9	Chrysene	10	U.
205-99-2	Benzo (b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ü

(1) Cannot be separated from Diphenylamine

117/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-03S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112841-003A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{A} \land A74216.\underline{D}$

Level: (low/med) LOW Date Received: 12/20/11

% Moisture: not dec. Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS	NO.	COMPOUND				(µg/	L or µg/Kg) U	G/L Q
1000	71-43-2	Benzene	0.00	5 535.8	62	(ess 8	1	i v
2.2	108-88-3	Toluene Ethylbenzene			11.			<u>U</u>
	1330-20-7	Xylene (total)	i amania	range et s	2	1000	i	U

HIMW-03S

Lab Name: H2M LABS INC Contract: Case No.: KEY-URS SAS No.: _____ SDG No.: KEY-URS143 Lab Code: H2M Lab Sample ID: 1112841-003B Matrix: (soil/water) WATER 2\N49433.D Sample wt/vol: 1000 (g/mL) mlLab File ID: LOW Date Received: 12/20/11 Level: (low/med) 12/22/11 Date Extracted: Decanted: (Y/N) N % Moisture: 01/11/12 Date Analyzed: Concentrated Extract Volume: 1000 (µL) Dilution Factor: 1.00 (µL) Injection Volume: Extraction: (Type) CONT pH: ____ GPC Cleanup: (Y/N) N

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	Ţ
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U.J
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

1/17/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-05D

Lab Name: H2M LABS INC Contr	ract:
Lab Code: H2M Case No.: KEY-URS SAM	S No SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab Sample ID: 1112938-001A
Sample wt/vol: 5 (g/mL ML	Lab File ID: A\A74223.D
Level: (low/med) LOW	Date Received: 12/22/11
% Moisture: not dec.	Date Analyzed: 12/28/11
GC Column: Rtx-624 ID: .18 (mm)	Dilution Factor: 1.00
Soil Extract Volume: (pL)	Soil Aliquot Volu(pL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	Ŭ
108-88-3	Toluene	2	
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	180	

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-05D

Lab Name:	H2M LABS INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: _____

SDG No.: KEY-URS141

Matrix: (soil/water) WATER

Lab Sample ID: 1112938-001B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

Date Received:

2\N49360.D 12/22/11

% Moisture:

Decanted: (Y/N)

LOW

Date Extracted: N

12/27/11

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

01/05/12

Injection Volume:

Level: (low/med)

2 (µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAG	NΩ

COMPOUND

(µg/L or µg/Kg) UG/L

CLED ING.	COLIE COLIE	(P3/ 2 02 P3/ 13/ 00/	* *
91-20-3	Naphthalene	380 258	Z/
91-57-6	2-Methylnaphthalene	110 120	1
208-96-8	Acenaphthylene	45	
83-32-9	Acenaphthene	3	J
86-73-7	Fluorene	6	J
85-01-8	Phenanthrene	10	Ŭ
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

(1) Cannot be separated from Diphenylamine

1/12/12

HIMW-05DDL

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M

Case No.: KEY-URS

KEY-URS SAS No.:

SDG No.: KEY-URS141

Matrix: (soil/water) WATER

Lab Sample ID:

1112938-001BDL

Sample wt/vol:

1000

(g/mL) ML

Lab File ID:

2\N49362.D

_

(low/med)

Date Received:

12/22/11

Level:

7

Date Received.

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

12/27/11 01/05/12

Concentrated Extract Volume:

1000 (µL)

(µL)

Date Analyzed:

1,...

Injection Volume:

2

Dilution Factor:

10.00

GPC Cleanup:

(Y/N) <u>N</u>

pH:

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(µg/L/or µg/Kg) UG/L

L Q

,		(P3/ 2 02 P3/ N3/ 00/ 1	×
91-20-3	Naphthalene	380	D
91-57-6	2-Methylnaphthalene	110	D
208-96-8	Acenaphthylene	43	DJ
83-32-9	Acenaphthene	100	Ü
86-73-7	Fluorene	100	U
85-01-8	Phenanthrene	100	ŭ
120-12-7	Anthracene	100	U
206-44-0	Fluoranthene	100	U
129-00-0	Pyrene	100	U
56-55-3	Benzo (a) anthracene	100	U
218-01-9	Chrysene	100	U
205-99-2	Benzo(b) fluoranthene 100		U
207-08-9	Benzo(k) fluoranthene 100		U
50-32-8	Benzo(a) pyrene 100		U
193-39-5	Indeno(1,2,3-cd)pyrene 100		U
53-70-3	Dibenzo (a, h) anthracene 100		U
191-24-2	Benzo(g,h,i)perylene	100	U

(1) Cannot be separated from Diphenylamine

1/12/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

HIMW-05I

Lab Name: H2M LABS INC	Contra	.ct:	
Lab Code: H2M Case No.: KEY	<u>-urs</u> sas	No	SDG No.: KEY-URS141
Matrix: (soil/water) WATER		Lab Sample ID:	1112889-001A
Sample wt/vol: 5 (g/mL ML	i.	Lab File ID:	A\A74202.D
Level: (low/med) LOW		Date Received:	12/21/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624 ID: .1	(mm) <u>8</u>	Dilution Factor	: 1.00
Soil Extract Volume:	(µL)	Soil Aliquot Vo	lu(µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	3	
108-88-3	Toluene	1	
100-41-4	Ethylbenzene	2	
1330-20-7	Xvlene (total)	120	

HIMW-05I

Lab Name: H2M LABS 1	INC	Contract		
Lab Code: <u>H2M</u>	Case No.: KEY-	URS SAS	No.:	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER		Lab Sample ID:	1112889-001B
Sample wt/vol:	1000 (g/mL)	ml	Lab File ID:	2\N49323.D
Level: (low/med)	TOM		Date Received:	12/21/11
% Moisture:	Decanted: (Y/N)	N	Date Extracted:	12/22/11
Concentrated Extract	Volume: 1000	(µL)	Date Analyzed:	01/03/12
Integrion Volume.	2 (117.)		Dilution Factor.	1 00

CONCENTRATION UNITS:

Extraction: (Type) SEPF

CAS NO. COMPOUND		(μ g/L or μ g/Kg) \underline{U} G/L	
91-20-3	Naphthalene	2000 690	E C
91-57-6	2-Methylnaphthalene	390 _300	ED
208-96-8	Acenaphthylene	190 200	EL
83-32-9	Acenaphthene	14	
86-73-7	Fluorene	33	
85-01-8	Phenanthrene	19	
120-12-7	Anthracene	2	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo (a) anthracene	10	υ
218-01-9	Chrysene 10		U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene 10		U
50-32-8	Benzo(a) pyrene 10		U
193-39-5	Indeno(1,2,3-cd)pyrene 10		U
53-70-3	Dibenzo(a,h)anthracene 10		Ŭ
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: ____

1/12/12

HIMW-05IDL

Lab Name	H2M LABS INC	Contract:
----------	--------------	-----------

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112889-001BDL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 2\N49357.D

Level: (low/med) LOW Date Received: 12/21/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/22/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/05/12

Injection Volume: 2 (µL) Dilution Factor: 40.00

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG	<u>/r</u> o
91-20-3	Naphthalene	2000	D.
91~57~6	2-Methylnaphthalene	/ 390	DJ
208-96-8	Acenaphthylene	190	DJ
83-32-9	Acenaphthene	400	U
86~73-7	Fluorene	400	U
85-01-8	Phenanthrene	400	U
120-12-7	Anthracene	400	U
206-44-0	Fluoranthene	400	U
129-00-0	Pyrene	400	U
56-55-3	Benzo(a)anthracene	400	U
218-01-9	Chrysene	400	U
205-99-2	Benzo(b) fluoranthene	400	U
207-08-9	Benzo(k)fluoranthene	400	U
50-32-8	Benzo(a)pyrene	400	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	400	U
53-70-3	Dibenzo(a,h)anthracene	400	U
191-24-2	Benzo(g,h,i)perylene	400	U

(1) Cannot be separated from Diphenylamine

1/12/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-05S

Lab Name: H2M LABS INC	Contract:		
Lab Code: H2M Case No.: KEY-U	RS SAS No.		SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab	Sample ID:	1112889-002A
Sample wt/vol: 5 (g/mL ML	Lab	File ID:	A\A74203.D
Level: (low/med) LOW	Date	Received:	12/21/11
% Moisture: not dec.	Date	: Analyzed:	12/22/11
GC Column: Rtx-624 ID: _18	(mm) Dilu	tion Factor	: 1.00
Soil Extract Volume: (pL)) Soil	Aliquot Vo	lu(pL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1 1	U
100-41-4	Ethylbenzene	1	Ü
1330-20-7	Yylene (total)	1	ŧJ

HIMW-05S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112889-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 2\N49324.D

Level: (low/med) LOW Date Received: 12/21/11

% Moisture: Decanted: (Y/N) N Date Extracted: $\underline{12/22/11}$

Concentrated Extract Volume: $\underline{1000}$ (μ L) Date Analyzed: $\underline{01/03/12}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ___ Extraction: (Type) $\underline{\text{SEPF}}$

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	Us
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO

HIMW-08D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112A37-001A

Sample wt/vol: $\underline{5}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{A}\backslash \text{A74228.D}}$

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: not dec. Date Analyzed: 12/28/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquet Volume (µL)

CAS NO.	COMPOUND	(µg/I	or µg/Kg) UG/L	Q
71-43-2	Benzene	B 3	1	Ū
108-88-3	Toluene		1	U
100-41-4	Ethylbenzene		1 i	U
1330-20-7	Xylene (total)		1 .	U

BO-WMIH	BD
BO-WMIH	BD

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112A37-001B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49436.D$

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/30/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/11/12

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	Ü
83-32-9	Acenaphthene	10	ŭ
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ü
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	ָ ט
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(q,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

1/17/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-08I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112A37-002A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{A} \setminus A74229.D$

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: not dec. Date Analyzed: 12/28/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS N	0.	COMPOUND		(µg/I	or µg/Kg	y) UG/L	Q
f****	71-43-2	Benzene	× 88. 3	50I -	1		υ
	108-88-3	Toluene Ethylbenzene			1	ray or	ט ט
	1330-20-7	Xylene (total)	- Si 1	399	1	10 0000000	4 U

Lab Name: H2M LABS INC

HIMM-08I

 Lab Code:
 H2M
 Case No.:
 KEY-URS
 SAS No.:
 SDG No.:
 KEY-URS143

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1112A37-002B

Contract:

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49437.D$

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: Decanted: (Y/N) N Date Extracted: $\underline{12/30/11}$ Concentrated Extract Volume: $\underline{1000}$ (μ L) Date Analyzed: $\underline{01/11/12}$

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	Ū
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	C D
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

1/12/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

man hear has	Committee of the Commit	
EDA	SAMPLE	NO

HIMW-08S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112A37-003A

Sample wt/vol: 5 (g/mL) ML Lab File ID: A\A74230.D

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: not dec. Date Analyzed: 12/28/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	•	COMPOUND	(µg/L c	r μg/Kg) UG	/ <u>L</u>	Q
	71-43-2	Benzene		1	Ü	J
·= 10: (000)	108-88-3 100-41-4	Toluene Ethylbenzene	- 1	1	ט	j J
	1330-20-7	Xylene (total)		an voncent	ט	J

Lab Name: H2M LABS INC

HIMW-08S

 Lab Code: H2M
 Case No.: KEY-URS
 SAS No.: SDG No.: KEY-URS143

 Matrix: (soil/water) WATER
 Lab Sample ID: 1112A37-003B

Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1112A37-003B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\text{ml}}$ Lab File ID: $\underline{2}$ N49438.D

Level: (low/med) LOW Date Received: 12/28/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/30/11

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{01/11/12}$

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	3	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	บ
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	UJ
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

1/17/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-12D

Lab Name: H2M LABS II	NC Contra	act:	
Lab Code: H2M	Case No.: <u>KEY-URS</u> SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112701-001A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74199.D
Level: (low/med)	LOW	Date Received:	12/16/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(uL)	Soil Alignot Vo	1u (nt.)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	υ
100-41-4	Ethylbenzene	1	บ
1330-20-7	Xvlene (total)	1	IJ

HIMW-12D

Lab Name: H2M LAB	S INC	Cont	ract:	
Lab Code: <u>H2M</u>	Case No.: KE	Y-URS	SAS No.:	SDG No.: KEY-URS141
Matrix: (soil/wate	r) WATER		Lab Sample ID:	1112701-001B
Sample wt/vol:	1000 (g/m	L) <u>ml</u>	Lab File ID:	1\N49256.D
Level: (low/med	LOW LOW		Date Received:	12/16/11
% Moisture:	Decanted: (Y/N)	N	Date Extracted:	12/19/11
Congentrated Extra	of Volume: 1000	(117.)	Date Analyzed:	12/27/11

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	Ü
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(q,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-12I

Lab Name: H2M LABS I	NC Contra	act:	
Lab Code: H2M	Case No.: <u>KEY-URS</u> SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112701-002A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74200.D
Level: (low/med)	LOW	Date Received:	12/16/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(рг)	Soil Aliquot Vo	lu(µL)

		CONCENTRALION ONTED!		
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q	
71-43-2	Benzene	53		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	3		
1330-20-7	Xylene (total)	7		

HIMW-12I

Lab Name	: H2M	LABS	INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112701-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $1\N49257.D$

Level: (low/med) \underline{LOW} Date Received: $\underline{12/16/11}$

% Moisture: Decanted: (Y/N) N Date Extracted: $\underline{12/19/11}$

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{12/27/11}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) \underline{CONT}

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	7	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	59	
83-32-9	Acenaphthene	56	
86-73-7	Fluorene	31	
85-01-8	Phenanthrene	11	
120-12-7	Anthracene	2	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SA	MPLE	NO
--------	------	----

HIMW-12S

Lab Name: H2M_LABS_IN	C Contra	act:	
Lab Code: H2M C	ase No.: KEY-URS SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112701-003A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74201.D
Level: (low/med)	LOW	Date Received:	12/16/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(hr)	Soil Aliquot Vo	lu(µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	i i i i i i i i i i i i i i i i i i i	U

Lab Name: H2M LABS INC

HIMW-12S

Lab Cod	e: <u>H2M</u>	Case No.: I	KEY-URS SAS	No.:	SDG No.:	KEY-URS14

Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1112701-003B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49356.D$

Level: (low/med) LOW Date Received: 12/16/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{01/05/12}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) \underline{CONT}

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	Ū
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ü
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ü
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ū,
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

1B

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13D

Lab Name: H2M LABS INC	Contrac	:t:	
Lab Code: H2M Case No.: KE	ey-urs sas n	No	SDG No.: KEY-URS141
Matrix: (soil/water) WATER	L	Lab Sample ID:	1112624-001A
Sample wt/vol: 5 (g/mL b	MIL L	Lab File ID:	A\A74187.D
Level: (low/med) LOW	D	Date Received:	12/14/11
% Moisture: not dec.	n	Date Analyzed:	12/21/11
GC Column: Rtx-624 ID:	.18 (mm) D	Dilution Factor	: 1.00
Soil Extract Volume:	(hr) s	Soil Aliquot Vo	lu(µL)

CAS NO. COMPOUND		(µg/L or µg/Kg) UG/L		
71-43-2	Benzene	3		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	U	
1330-20-7	Yylene (total)	2		

SDG No.: KEY-URS141

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-13D

Lab Name: H2M LABS INC Contract:

Sample wt/vol:

Lab Code: H2M Case No.: KEY-URS SAS No.: _____

Lab Sample ID: 1112624-001B

Matrix: (soil/water) WATER Lab Sample ID: 1

1000 (g/mL) <u>ml</u> Lab File ID: <u>1\N49248.D</u>

Level: (low/med) LOW Date Received: 12/14/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 12/27/11

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	9	J.
83-32-9	Acenaphthene	5	J
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	Ū
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13I

Lab Name: H2M LABS INC	Contract		
Lab Code: H2M Case No.: KEY-U	JRS SAS No	• (************************************	SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lal	Sample ID:	1112624-002A
Sample wt/vol: 5 (g/mL ML	Lal	File ID:	A\A74188.D
Level: (low/med) LOW	Da	te Received:	12/14/11
% Moisture: not dec.	Da	te Analyzed:	12/21/11
GC Column: Rtx-624 ID: .18	(mm) Di	lution Factor	1.00
Soil Extract Volume: (µ	L) So	il Aliquot Vo	olu(pL)

CAS NO.	COMPOUND	(hg/L or hg/kg) ug/L	Q	
71-43-2	Benzene	23		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	บ	
1220 20 7	Vulenc (total)	q		

HIMW-13I

Lab Na	ame:	H2M	LABS	INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112624-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $1\N49249.D$

Level: (low/med) <u>LOW</u> Date Received: 12/14/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 12/27/11

Injection Volume: $\underline{2}$ (μL) Dilution Factor: 1.00

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-	Naphthalene	10	U
91-57-	6 2-Methylnaphthalene	10	U
208-96-	8 Acenaphthylene	35	
83-32-	9 Acenaphthene	5	J
86-73-	7 Fluorene	9	J
85-01-	8 Phenanthrene	12	
120-12-	7 Anthracene	1	J
206-44-	0 Fluoranthene	10	U
129-00-	0 Pyrene	10	U
56-55-	Benzo(a)anthracene	10	U
218-01-	9 Chrysene	10	Ū
205-99-	Benzo(b) fluoranthene	10	Ū
207-08-	9 Benzo(k) fluoranthene	10	Ü
50-32-	8 Benzo(a)pyrene	10	U
193-39-	5 Indeno(1,2,3-cd)pyrene	10	U
53-70-	3 Dibenzo(a,h)anthracene	10	U
191-24-	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13S

Lab Name: H2M LABS INC	Contract:		
Lab Code: H2M Case No.: KEY-U	<u>rs</u> sas no.	***************************************	SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab	Sample ID:	1112624-003A
Sample wt/vol: 5 (g/mL ML	Lab	File ID:	A\A74189.D
Level: (low/med) LOW	Dat	e Received:	12/14/11
% Moisture: not dec.	Dat	e Analyzed:	12/21/11
GC Column: Rtx-624 ID: .18	(mm) Dil	ution Factor	1.00
Soil Extract Volume: (µI	i) Soi	l Aliquot Vo	lu(µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q	
71-43-2	Benzene	1	U	
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	U	
1330-20-7	Xvlene (total)	1	U	

HIMW	-1	3S
------	----	----

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141 Matrix: (soil/water) WATER Lab Sample ID: 1112624-003B Lab File ID: 1\N49250.D Sample wt/vol: 1000 (g/mL) mlLevel: (low/med) Date Received: 12/14/11 LOW Decanted: (Y/N) N Date Extracted: 12/19/11% Moisture: Concentrated Extract Volume: 1000 (µL) Date Analyzed: 12/27/11 Injection Volume: $\underline{2}$ (μ L) Dilution Factor: 1.00

CONCENTRATION UNITS:

Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	10	Ü
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: ____

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14D

Lab Name: H2M LABS INC	Contra	nct:	
Lab Code: H2M Ca	ase No.: KEY-URS SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112642-001A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74192.D
Level: (low/med) L	OW	Date Received:	12/15/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(pL)	Soil Aliquot Vo	lu (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
7:1-43-2	Benzene	1	U
108-88-3	Toluene	1	υ
100-41-4	Ethylbenzene	1	υ
1330-20-7	Xvlene (total)	1	U

HIMW-14D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112642-001B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\text{ml}}$ Lab File ID: $\underline{1} \underline{\text{N49253.D}}$

Level: (low/med) \underline{LOW} Date Received: $\underline{12/15/11}$

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 12/27/11

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) \underline{CONT}

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U /
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	ט
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14I

Lab Name: <u>H2M LABS INC</u> Co	entract:
Lab Code: H2M Case No.: KEY-URS	SAS No SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab Sample ID: 1112624-004A
Sample wt/vol: 5 (g/mL ML	Lab File ID: A\A74190.D
Level: (low/med) LOW	Date Received: 12/14/11
% Moisture: not dec.	Date Analyzed: 12/21/11
GC Column: Rtx-624 ID: _18 (m	m) Dilution Factor: 1.00
Soil Extract Volume: (µL)	Soil Aliquot Volu(µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	19	
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	5	
1330-20-7	Xvlene (total)	4	

HIMW-14I

Lab Name:	H2M LABS INC	Contract:
		· ·

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS141

Matrix: (soil/water) WATER

Lab Sample ID:

1112624-004B

Sample wt/vol:

1000

(g/mL) <u>ml</u> Lab File ID:

1\N49251.D

LOW

Date Received:

12/14/11

% Moisture:

Level:

Decanted: (Y/N)

Date Extracted:

Concentrated Extract Volume:

(low/med)

N

12/19/11

1000 (µL)

Date Analyzed:

12/27/11

Injection Volume:

(µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	22	
83-32-9	Acenaphthene	18	
86-73-7	Fluorene	9	J
85-01-8	Phenanthrene	8	J
120-12-7	Anthracene	1	J.
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55 - 3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a) pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP-121411

Lab Name: H2M LABS	INC Contra	
Lab Code: H2M	Case No.: KEY-URS SAS	No SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab Sample ID: 1112624-005A
Sample wt/vol: 5	(g/mL ML	Lab File ID: A\A74191.D
Level: (low/med)	FOM	Date Received: 12/14/11
% Moisture: not dec		Date Analyzed: 12/22/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor: 1.00
Soil Extract Volume	e: (pL)	Soil Aliquot Volu(µL)
		CONCENTRATION UNITS:

CAS NO.	COMPOUND	(hg/ n or hg/ ng/ oo/ n	Q
71-43-2	Benzene	18	
108-88-3	Toluene	1	ט
100-41-4	Ethylbenzene	4	
1330-20-7	Xylene (total)	4	

DUP-121411

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112624-005B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $1\N49252.D$

Level: (low/med) LOW Date Received: 12/14/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 12/27/11

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	22	
83-32-9	Acenaphthene	19	
86-73-7	Fluorene	8	J
85-01-8	Phenanthrene	8	J
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.
THE RESERVE		

HIMW-15D

Lab Name: H2M LABS 1	INC Cont	ract:	
Lab Code: H2M	Case No.: KEY-URS SA	S No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112642-002A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74193.D
Level: (low/med)	FOM	Date Received:	12/15/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(pL)	Soil Aliquot Vo	lu(µL)
	9	CONCENT	

		CONCENTRATION UNITS:	
CAS NO. COMPOUND		(µg/L or µg/Kg) UG/L	0
71-43-2	Benzene		<u> </u>
108-88-3	Toluene		U
100-41-4	Ethylbenzene		U
1330-20-7	Xylene (total)		U
	-Jame (cocal)		TT

HIMW-15D

Lab Name: H2M LABS INC Contract	
---------------------------------	--

Lab Code: H2M Case No.: KEY-URS SAS No.: _____

SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112642-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $1\N49254.D$

Level: (low/med) LOW Date Received: 12/15/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{12/27/11}$

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

	CONCENTION ONLIN.	
COMPOUND	(μ g/L or μ g/Kg) U G/L	Q
Naphthalene	10	U'
2-Methylnaphthalene	10	U
Acenaphthylene	10	U ·
Acenaphthene	10	U
Fluorene	10	U
Phenanthrene	10	U
Anthracene	10	U
Fluoranthene	10	U
Pyrene	10	U
Benzo(a)anthracene	10	U
Chrysene	10	U
Benzo(b) fluoranthene	10	Ü
Benzo(k) fluoranthene	10	U
Benzo(a)pyrene	10	U
Indeno(1,2,3-cd)pyrene	10	υ
Dibenzo(a,h)anthracene	10	U
Benzo(g,h,i)perylene	10	Ū
	Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene	COMPOUND (µg/L or µg/Kg) UG/L Naphthalene 10 10 2-Methylnaphthalene 10 10 Acenaphthylene 10 10 Acenaphthene 10 10 Fluorene 10 10 Phenanthrene 10 10 Fluoranthene 10 10 Pyrene 10 10 Benzo (a) anthracene 10 10 Chrysene 10 10 Benzo (b) fluoranthene 10 10 Benzo (a) pyrene 10 10 Indeno (1,2,3-cd) pyrene 10 10 Dibenzo (a, h) anthracene 10 10

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHRET

SAMPLE	

HIMW-15I

Lab Name: H2M LABS IN	C Contra	ict:	
Lab Code: H2M C	ase No.: KEY-URS SAS	No.	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112642-003A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74198.D
Level: (low/med) L	OW	Date Received:	12/15/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(hr)	Soil Aliquot Vo	lu(µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	22	
108-88-3	Toluene	1	บ
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	2	

HIMW-15I

Lab Name: H2M LABS	INC		Cont	cract:	Santin Nickella St. W.
Lab Code: H2M	Case	No.: KEY-U	JRS	SAS No.:	SDG No.: KEY-URS141
Matrix: (soil/water) <u>WATER</u>			Lab Sample ID:	1112642-003B
Sample wt/vol:	1000	(g/mL)	<u>ml</u>	Lab File ID:	1\N49255.D
Level: (low/med)		LOW		Date Received:	12/15/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/19/11

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{12/27/11}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

(µL)

CONCENTRATION UNITS:

Dilution Factor: 1.00

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	27	
83-32-9	Acenaphthene	7	J
86-73-7	Fluorene	10	Ü
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

Injection Volume:

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-20I

Lab Name: H2M LABS II	Contra	ict:	
Lab Code: H2M	Case No.: <u>KEY-URS</u> SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112889-003A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74204.D
Level: (low/med)	TOM	Date Received:	12/21/11
% Moisture: not dec.		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(hr)	Soil Aliquot Vo	olu(pL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	i	บ
108-88-3	Toluene		υ
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	

HIMW-20I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112889-003B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49325.D$

Level: (low/med) LOW Date Received: 12/21/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/22/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/03/12

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) $\underline{\text{SEPF}}$

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	Ū
208-96-8	Acenaphthylene	10	U:
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

HIMW-20S

Lab Name: H2M LABS INC	Contra	et:	
Lab Code: H2M Case No.: KEY	-URS SAS	Мо	SDG No.: KEY-URS141
Matrix: (soil/water) WATER		Lab Sample ID:	1112938-002A
Sample wt/vol: 5 (g/mL ML	ı.	Lab File ID;	A\A74224.D
Level: (low/med) LOW		Date Received:	12/22/11
% Moisture: not dec.		Date Analyzed:	12/28/11
GC Column: Rtx-624 ID: 11	<u>8</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume: ((pL)	Soil Aliquot Vo	lu(pL)
		CONCEN	THE A DIT ON THAT THE .

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	i	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)		U

HIMW-20S	

Lab Name:	H2M LABS INC	Contract:
	- 11	-

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS141

Matrix: (soil/water) WATER Lab Sample ID: 1112938-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49361.D$

Level: (low/med) LOW Date Received: 12/22/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/27/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/05/12

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) \underline{CONT}

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ŭ
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

-		
EPA	SAMPLE	NO

HIMW-22

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER

Lab Sample ID: 1112775-001A

Sample wt/vol: 5 (g/mL) ML Lab File ID: A\A74208.D

Level: (low/med) LOW

Date Received: 12/19/11

% Moisture: not dec.

Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L Q

		1 21 1 21 - 21 <u></u>	
71-43-2	Benzene	1	Ū
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	Ū
1330-20-7	Xvlene (total)	1	

HIMW-22	

Lab Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-001B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49397.D$

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/21/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/09/12

Injection Volume: $\underline{2}$ (µL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene ·	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

77 T 7 W	SAMPLE	NTO
EFM	SAMPLE	NU

HIMW-23

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER

Lab Sample ID: 1112775-002A

Sample wt/vol: 5 (g/mL) MI Lab File ID: A\A74209.D

Level: (low/med) LOW

Date Received: 12/19/11

% Moisture: not dec.

Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CAS NO.	COMPOUND	(µg/L or	µg/Kg) <u>UG/L</u>	Q
71-43-2	Benzene		1	Marie Communication
108-88-3	Toluene		1	U
100-41-4	Ethylbenzene	11 22 5100.50	1	U
1330-20-7	Xylene (total)		1	U

HIMW-23

Lab Name	H2M LABS	INC		Cont	ract:	
Lab Code	: <u>н2м</u>	Case	No.: KEY-	URS	SAS No.:	SDG No.: KEY-URS143
Matrix:	(soil/water)	WATER			Lab Sample ID:	1112775-002B
Sample w	t/vol:	1000	(g/mL)	<u>ml</u>	Lab File ID:	2\N49398.D
Level:	(low/med)		LOW		Date Received:	12/19/11
% Moistu	re:	Decant	ed: (Y/N)	N	Date Extracted:	12/21/11

Date Analyzed: 01/09/12 Concentrated Extract Volume: 1000 (µL)

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: 1.00 Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	บ
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Ругеле	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	บ
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	υ
191-24-2	Benzo(q,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: ____

VOLATILE ORGANICS ANALYSIS DATA SHEET

	SAMPLE	
EPA		

HIMW-24

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-003A

Sample wt/vol: 5 (g/mL) ML Lab File ID: A A 74210.D

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: not dec. Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
71-43-2	Benzene	320 290	PD
108-88-3	Toluene	38	
100-41-4	Ethylbenzene	43	
1330-20-7	Xylene (total)	270	

117/12

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-24DL

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-003ADL

Sample wt/vol: 5 (g/mL) ML Lab File ID: A\A74226.D

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: not dec. Date Analyzed: 12/28/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 2.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/:	L or µg/Kg) <u>UG/</u>	<u>L</u>	Q	
71-43-2	Benzene		320	sea en	D.	
108-88-3	Toluene	\	36	24000	D	
100-41-4	Ethylbenzene	\	42		_О	- 1
1330-20-7	Xvlene (total	.)\	260		D	

1/13/12

HIMW-24

Lab	Name:	H2M LABS INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-003B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $2\N49399.D$

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/21/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/09/12

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	700 390	PI
91-57-6	2-Methylnaphthalene	16	
208-96-8	Acenaphthylene	35	
83-32-9	Acenaphthene	26	
86-73-7	Fluorene	4	J
85-01 - 8	Phenanthrene	10	
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ü
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	1.0	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

117/12

HIMW-24DL

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-003BDL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 2\N49402.D

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: Decanted: (Y/N) N Date Extracted: (12/21/11)

Concentrated Extract Volume: / 1000 (µL) Date Analyzed: 01/10/12

Injection Volume: 2 (µL) Dilution Factor: 20.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/</u>	<u>ь</u> О
91-20-3	Naphthalene	700	D
91-57-6	2-Methylnaphthalene	/ 22	DJ
208-96-8	Acenaphthylene	35	DJ
83-32-9	Acenaphthene	28	DJ
86-73-7	Fluorene	200	U
85-01-8	Phenanthrene	200	Ū
120-12-7	Anthracene	200	U
206-44-0	Fluoranthene	200	U
129-00-0	Pyrene	200	Ū
56-55-3	Benzo(a) anthracene	200	U
218-01-9	Chrysene	200	U
205-99-2	Benzo(b) fluoranthene	200	U
207-08-9	Benzo(k)fluoranthene	200	U
50-32-8	Benzo(a)pyrene	200	U
193-39-5	Indeno(1,2,3-cd)pyrene	200	U
53-70-3	Dibenzo(a,h)anthracene	200	U
191-24-2	Benzo(g,h,i)perylene	200	U

(1) Cannot be separated from Diphenylamine

1/17/12

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP121911

Lab Name: H2M LABS	INC Contra	uct:	
Lab Code: H2M	Case No.: KEY-URS SAS	No.:	SDG No.: KEY-URS143
Matrix: (soil/water)	WATER	Lab Sample ID:	1112775-005A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	A\A74212.D
Level: (low/med)	TOM	Date Received:	12/19/11
% Moisture: not dec		Date Analyzed:	12/22/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume	(pL)	Soil Aliquot Vol	ume (pL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	pg/L or pg/Kg) UG/L	Q
71-43-2	Benzene	320 290	ED.
108-88-3	Toluene	38	
100-41-4	Ethylbenzene	43	
1330-20-7	Xylene (total)	280	

1/17/12

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET-

DUP121911DL

Lab Name: H2M LABS INC

contract:

Lab Code: H2M Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS143

Matrix: (soil/water) WATER

Lab Sample ID:

1112775-005ADL

Sample wt/vol: 5 (g/mL) ML

Lab File ID: A\A74227.D

Level: (low/med) LOW

Date Received: 12/19/11

% Moisture: not dec.

Date Analyzed: 12/28/11

GC Column: Rtx-624

ID: .18 (mm) Dilution Factor: 2.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

/(µg/L or µg/Kg) UG/L Q

[71-43-2	Benzene		320	D
	108-88-3	Toluene Ethylbenzene	*** ** * ** ** ***	36	р Д
	1330-20-7	Xylene (total)	\	250	D

Lab Name: H2M LABS INC

DUP121911

Lab Code: H2M	Case No.: KEY-U	RS SAS No.:	SDG No.: KEY-URS143
Lab Code: MZII	case no RHI-01	BPB NO.	. Dec nov. Italy constitution
Matrix: (soil/wa	ater) <u>WATER</u>	Lab Sample ID:	1112775-005B

Contract:

 Sample wt/vol:
 1000
 (g/mL)
 ml
 Lab File ID:
 2\N49401.D

 Level:
 (low/med)
 LOW
 Date Received:
 12/19/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/21/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/09/12

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/</u>	<u>.</u> Q
91-20-3	Naphthalene	530 340	- E
91-57-6	2-Methylnaphthalene	16	
208-96-8	Acenaphthylene	31	
83-32-9	Acenaphthene	26	
86-73-7	Fluorene	4	J
85-01-8	Phenanthrene	9	J
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	ט
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

117/12

рН: ___

DUP121911DL

Lab Name: <u>H2M LABS INC</u> Contrac	t:	
Lab Code: H2M Case No.: KEY-URS SAM	S No.:	SDG No.: KEY-URS143
Matrix: (soil/water) WATER	Lab Sample ID:	1112775-005BDL
Sample wt/vol: 1000 (g/mL) ML	Lab File ID:	2\N49403.D
Level: (low/med) LOW	Date Received:	12/19/11
% Moisture: Decanted: (Y/N) N	Date Extracted:	12/21/11
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	01/10/12
Injection Volume: $\underline{2}$ (μL)	Dilution Factor:	10.00
and allerman /V/N/N NU	Extraction: (Type	CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND		(µg/L or µg/Kg) UG/	<u>/L</u> Q
91-20-3	Naphthalene		530	D
91-57-6	2-Methylnaphtha	alene	/20	DJ
208-96-8	Acenaphthylene		34	DJ
83-32-9	Acenaphthene		/ 29	DJ
86-73-7	Fluorene		100	Ū
85-01-8	Phenanthrene		100	Ū
120-12-7	Anthracene		100	U
206-44-0	Fluoranthene		100	U
129-00-0	Pyrene		100	U
56-55-3	Benzo(a)anthra	cene	100	U
218-01-9	Chrysene		100	U
205-99-2	Benzo(b)fluora	nthene	100	U
207-08-9	Benzo(k)fluora		100	ט
50-32-8	Benzo(a)pyrene		100	U
193-39-5	Indeno(1,2,3-c		100	ט
53-70-3	Dibenzo(a,h)an		100	Ü
191-24-2	Benzo(g,h,i)pe		100	U

(1) Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N

VOLATILE ORGANICS ANALYSIS DATA SHEET

T2 T3 T3	SAMPLE	NTO
P. F.	SAMPLE	INU.

HIMW-25

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-004A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{A} \land A74211.D$

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: not dec. Date Analyzed: 12/22/11

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (μL) Soil Aliquot Volume (μL)

CAS NO.		COMPOUND	(µg/L	or µg/Kg) UG/L	Q
r common estat	71-43-2	Benzene	8111 in 1	1	U
	108-88-3	Toluene		2	
	100-41-4	Ethylbenzene		2	
	1330-20-7	Yulene (total)		6	

HIMW-25

Lab Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Matrix: (soil/water) WATER Lab Sample ID: 1112775-004B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 2\N49400.D

Level: (low/med) LOW Date Received: 12/19/11

% Moisture: Decanted: (Y/N) N Date Extracted: 12/21/11

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 01/09/12

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	Ū
91~57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	1.0	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

12 72 X	SAMPLE	TATO.
P. PA	SAMPLE	NO

FB122811

Lab Name: H2M LABS	INC Contra	uct:	
Lab Code: H2M	Case No.: KEY-URS SAS	No.:	SDG No.: KEY-URS143
Matrix: (soil/water)	WATER	Lab Sample ID:	1112A37-004A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	A\A74231.D
Level: (low/med)	TOM	Date Received:	12/28/11
% Moisture: not dec.		Date Analyzed:	12/28/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(pL)	Soil Aliquot Vol	ume (µL)

CAS NO.		COMPOUND	(µg/:	L or pg/Kg) UG/L	Q
71-	43-2	Benzene	(4)-40) (4)	1	U
Carlo Carlo Company of the Carlo Company	88-3	Toluene Ethylbenzene		1	<u>u</u>
1330-	20-7	Xvlene (total)		1	U

FB122811

Contract: Lab Name: H2M LABS INC SDG No.: KEY-URS143 Case No.: KEY-URS SAS No.: Lab Code: H2M Matrix: (soil/water) WATER Lab Sample ID: 1112A37-004B Lab File ID: Sample wt/vol: 1000 (g/mL) <u>ml</u> 2\N49439.D LOW Level: (low/med) Date Received: 12/28/11 Decanted: (Y/N) N Date Extracted: 12/30/11 % Moisture: Date Analyzed: 01/11/12 Concentrated Extract Volume: 1000 (µL) Dilution Factor: 1.00 (µL) Injection Volume: 2 Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	Ū
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	Ŭ
218-01-9	Chrysene	10	T.U
205-99-2	Benzo(b) fluoranthene	10	Ü
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(q,h,i)perylene	10	Ū

(1) Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

Xylene (total)

1330-20-7

EPA SAMPLE NO.

TB-121411

Lab Name: H2M LABS	INC Contra	act:		
Lab Code: H2M	Case No.: KEY-URS SAS	No	SDG No.: KEY-U	₹ S141
Matrix: (soil/wate:	r) WATER	Lab Sample ID:	1112624-006A	
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74184.D	
Level: (low/med)	LOW	Date Received:	12/14/11	
% Moisture: not de	c.	Date Analyzed:	12/21/11	
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor	1.00	
Soil Extract Volum	e:(pL)	Soil Aliquot Vo	olu(µL)	
		CONCE	NTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L	or µg/Kg) UG/L	Q
71-43-2	Benzene		1	U
108-88-3	Toluene		1	U
100-41-4	Ethylbenzene		1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-121511

Lab Name: H2M LABS INC	Contract:
Lab Code: H2M Case No.: KEY-U	RS SAS No SDG No.: KEY-URS141
Matrix: (soil/water) WATER	Lab Sample ID: 1112642-004A
Sample wt/vol: 5 (g/mL ML	Lab File ID: A\A74185.D
Level: (low/med) LOW	Date Received: 12/15/11
% Moisture: not dec.	Date Analyzed: 12/21/11
GC Column: Rtx-624 ID: _18	(mm) Dilution Factor: 1.00
Soil Extract Volume: (pL)	Soil Aliquot Volu(µL)

		CONCENTION DATES.	Q
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	TI II

VOLATILE ORGANICS ANALYSIS DATA SHEET

71-43-2

108-88-3

100-41-4

1330-20-7

Benzene

Toluene

Ethylbenzene

Xylene (total)

EPA SAMPLE NO.

U

U

U

U

TB-121611

1

1

Lab Name: H2M LABS I	NC Contra	nct:
Lab Code: H2M	Case No.: <u>KEY-URS</u> SAS	No SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID: 1112701-004A
Sample wt/vol: 5	(g/ml ML	Lab File ID: A\A74186.D
Level: (low/med)	LOW	Date Received: 12/16/11
% Moisture: not dec.		Date Analyzed: 12/21/11
GC Column: Rtx-624	ID: _18 (mm)	Dilution Factor: 1.00
Soil Extract Volume:	(рт)	Soil Aliquot Volu(µL)
		CONCENTRATION UNITS:
CAR NO	COMPOTIND	(µg/L or µg/Kg) UG/L Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

TITIZ	OBLINT D	370
II. PA	SAMPLE	NI I

TB121911

CAS NO.		COMPOUND				(µg/L	or	μg/Kg) UG/	<u>r</u>	Q	ļ.
Promiser Co.	71-43-2	Benzene	e = 90#	1.170	@10055	-	3	1		Ü	- 1
	108-88-3 100-41-4	Toluene Ethylbenzene			-10		142	1		Ü	Œ
la consumer l	1330-20-7	Xylene (total)	23	0.00				1	1.	U	- 6

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

TB122011

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143 Matrix: (soil/water) WATER Lab Sample ID: 1112841-004A Sample wt/vol: 5 (g/mL) ML Lab File ID: A\A74217.D Level: (low/med) LOW Date Received: 12/20/11 % Moisture: not dec. Date Analyzed: 12/22/11 GC Column: Rtx-624 ID: 18 (mm) Dilution Factor: 1.00 (μL) Soil Aliquot Volume (μL)

CONCENTRATION INITES.

			CONCE	AIRMITON ONLIS	•		
CAS NO.		COMPOUND		(µg/L or µg/Kg) UG/L		Q	
	71-43-2	Benzene		1		U	1
	108-88-3	Toluene Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	<u>1</u>	Î	Ü	4
E w or no	1330-20-7	Xylene (total)		1	Vicas	U	_

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-122111

Lab Name:	H2M LABS INC	Contra	act:	
Lab Code: 1	H2M Case	No.: KEY-URS SAS	No	SDG No.: KEY-URS141
Matrix: (so	oil/water) WA	TER	Lab Sample ID:	1112889-004A
Sample wt/	vol: <u>5</u>	(g/mL ML	Lab File ID:	A\A74207.D
Level: (Low/med) LOW		Date Received:	12/21/11
% Moisture	: not dec.		Date Analyzed:	12/22/11
GC Column:	Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor	: 1.00
Soil Extra	ct Volume:	(рь)	Soil Aliquot Vo	olu(µL)

CAS NO.	COMPOUND	(µg/1 or µg/kg/ de/1	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	Ū
100-41-4	Ethylbenzene	1	υ
1330-20-7	Xvlene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-122211

Lab Name: H2M LABS	INC Contra	ict:	
Lab Code: H2M	Case No.: KEY-URS SAS	No	SDG No.: KEY-URS141
Matrix: (soil/water)	WATER	Lab Sample ID:	1112938-003A
Sample wt/vol: 5	(g/mL ML	Lab File ID:	A\A74225.D
Level: (low/med)	LOW	Date Received:	12/22/11
% Moisture: not dec.		Date Analyzed:	12/28/11
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume:	(hr)	Soil Aliquot Vo	lu(pL)

CAS NO.	COMPOUND	(hg/r or hg/kg) ng/r	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)		U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB122811

Lab Name: H2M L2	ABS INC	Contra	.ct:	
Lab Code: H2M	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS143
Matrix: (soil/wat	er) <u>WATER</u>		Lab Sample ID:	1112A37-005A
Sample wt/vol:	<u>5</u> (g/ml) <u>ML</u>	Lab File ID:	A\A74232.D
Level: (low/med) <u>rom</u>		Date Received:	12/28/11
% Moisture: not d	eç.		Date Analyzed:	12/28/11
GC Column: Rtx-	624 ID	: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volu	me:	(pL)	Soil Aliquot Volu	ume (µL)

CAS NO.		COMPOUND	(µg/L	or µg/Kg) UG/L	Q
E 5 85 1	71-43-2	Benzene		1	Ü
TANGE DAY OF THE	108-88-3	Toluene		1	U
	100-41-4	Ethylbenzene		1	Ū
	1330-20-7	Xvlene (total)		1	U

ATTACHMENT B SUPPORT DOCUMENTATION

H2M LABS, INC.

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 12/14/11, 12/15/11, 12/16/11, 12/21/11 & 12/22/11 SDG #: KEY-URS141

For Sample(s):

HIMW-13D	HIMW-15D	HIMW-05I
HIMW-13I	HIMW-15I	HIMW-05S
HIMW-13S	TB-121511	HIMW-20I
HIMW-14I	HIMW-12D	TB-122111
DUP-121411	HIMW-12I	HIMW-05D
TB-121411	HIMW-12S	HIMW-20S
HIMW-14D	TB-121611	TB-122211

The above sample(s) was/were analyzed for a select list of volatile organic analytes (BTEX) by EPA method 8260B.

All Q.C. data and calibrations met the requirements of the method, unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-20I was analyzed as the matrix spike/matrix spike duplicate. All percent recoveries and RPDs were met. Lab fortified blanks were analyzed and indicate good method efficiency. All compounds recovered within Q.C. limits.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: January 6, 2012

Jøann M. Slavin

Senior Vice President

H2M LABS, INC.

SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 12/14/11, 12/15/11, 12/16/11, 12/21/11 & 12/22/11 SDG #: KEY-URS141

For Sample(s):

HIMW-13D	HIMW-12D
HIMW-13I	HIMW-12I
HIMW-13S	HIMW-12S
HIMW-14I	HIMW-05I
DUP-121411	HIMW-05S
HIMW-14D	HIMW-20I
HIMW-15D	HIMW-05D
HIMW-15I	HIMW-20S

The above sample(s) was/were analyzed for a select list of semivolatile organic analytes (polynuclear aromatics) by EPA method 8270C.

All QC data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-20I was analyzed as the matrix spike/matrix spike duplicate. All percent recoveries and RPDs were met. A lab fortified blank was analyzed and indicates good method efficiency. All compounds recovered within Q.C. limits.

Samples HIMW-05I and HIMW-05D were reanalyzed at a dilution due to concentration levels of analytes above the calibration range. Both sets of data are submitted.

Surrogate recoveries were diluted out in the dilution of sample HIMW-05I.

Pyrene and chrysene had a %RSD greater then 20.5% in the initial calibration. Linear regression was used.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: January 10, 2012

Senior Vice President

HZM LABS, INC.

38804 EXTERNAL CHAIN OF CUSTODY

Ile, NY 11747-5076	0-8436
Rd, Melvi	340 Fax: (631) 420-
575 Broad Hollow F	Tel: (631) 694-304

Tal. (624) 604_2040 Eav. (634) 420_8426	AL IENT.	1	ľ		000 0000	
	CLIEN I.	3	20		HZM SUG NO	HZM SDG NO. FEY -URC 14
Notional Cod - 40 confer 2011 GW Samolize			_	NOTES:	Player	Froject Contact: Jon Sundquist
11176098, 80004	HC)				Phon	Phone Number: 1207
SAMPLERS: (signature)/Client		87	***		USIN	/16 - 725-07 PISIDIIOPE#
Megan Dascol: Maga Dascol.	8m0h					
	Sten	ANALYSIS REQUESTED	UESTED			
TURNAROUND TIME: Stangard	Contail	<u>o</u>	r.	INORG.		
TIME MATRIX	AQV ANA	Pool		СИ	LAB I.D. NO.	REMARKS:
1414 W TB 121411	2 X				2624-00G	
12/1/11 850 GW HIMW-13S	4 x x				- 00 3	
174/11/017 6W HIMW-131	* X *				700-	
74/4 11 42 GW HIMW-13D	* X				100-	
1244 340 GW HIMW-14T	* × ×				400-	
M) 0021	4 × ×			->	200-	
Time Received by: (Sig	mature)	Cate				
1. 1. 16.80	325	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	90 JI 10 20	LABO	LABORATORY USE ONLY	
Date Time Received by: (Sign	(arrie)	Date 12-14-11	Time ((6:57)	Discrepancies Between Sample Labels and COC Record? Yor N		Mered Airbills
Relinquished by: (Signeture) Date Time Received by: (Signeture)	(eun)	Date	TIMe	Explain:	4. Properly preserved: Mor N	Z
					COC Tape was:	Born
Refinquished by: (Signature) Date Received by: (Signature)	nre)	Date	ime ∏		2. Unbroken on outer package: Or N	2. Unbroken on outer package: Or N 3. COC record present & complete upon sample receipt:
				The second secon	N S	

YELLOW COPY - CLIENT

WHITE COPY - PRIGINAL KEY-URS141 83

PINK COPY - LABORATORY

labs

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436

Website: www.h2mlabs.com

Key-URS 141

Sample Receipt Checklist

KEY-URS141 S4

Client Name KEY-URS Date and Time Receive 12/14/2011 4:57:00 PM Work Order Numbe 1112624 RcptNo: 1 Received by MelissaWatson Completed by Reviewed by: Reviewed Date: 12 16 11 Completed Date: Carrier name H2M Pickup Chain of custody present? Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? Yes 🔽 No 🗌 Chain of custody agrees with sample labels? Yes 🗸 No 🗍 Not Presen Are matrices correctly identified on Chain of custody? Yes 🗸 No 🗌 Is it clear what analyses were requested? Yes 🗸 No 🗌 Custody seals intact on sample bottles? Yes 🗌 No 🗌 Not Presen Samples in proper container/bottle? Yes 🗸 No 🗌 Were correct preservatives used and noted? Yes 🗸 No 🗌 Sample containers intact? Yes 🗸 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 No 🗌 Were container lables complete (ID, Pres, Date)? Yes 🗸 No 🗌 All samples received within holding time? Yes 🗸 No 🗌 Was an attempt made to cool the samples? Yes 🗹 No 🗌 All samples received at a temp. of > 0° C to 6.0° C? Yes 🗌 No 🗹 Response when temperature is outside of range: Samples were collected the same day and chilled. Preservative added to bottles: Sample Temp. taken and recorded upon receipt? Yes 🗸 No 🗌 To 11.1 0 Water - Were bubbles absent in VOC vials? Yes 🔽 No 🗌 No Vials Water - Was there Chlorine Present? Yes No 🗀 V Water - pH acceptable upon receipt? Yes 🗹 No 🗆 No Water Are Samples considered acceptable? Yes 🗸 No 🗌 **Custody Seals present?** Yes No 🗸 Traffic Report or Packing Lists present? Yes No 🔽 Airbill or Sticker? Air Bill 🔲 Sticker Not Present Airbill No: Sample Tags Present? Yes No 🗸 Sample Tags Listed on COC? Yes 🗌 No V Tag Numbers: Sample Condition? Intact 🗹 Broken Leaking Case Number: SDG: SAS: KEY-URS141 Adjusted? Any No and/or NA (not applicable) response must be detailed in the comments section be

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

38805 EXTERNAL CHAIN OF CUSTODY

Tel: (631) 694-3040 Fax: (631) 420-8436	CLIENT	1.75	5	2			HOM COC NO.	. CM
DBO IECT NAMENI IMBER		5	-	1			DOC MAIN	SO.
Nationalland 4 Quarter 2011 GW		Jen 11				NOTES:		Project Contact
11176098.00004	o Contraction	no tree						Phone Number:
SAMPLERS: (signature)/Client	B 200	94						716-923-1207
	0-							PIS/Quote #
DELIVERABLES:	/	r1						
X S	to of enemi	ANALY	SIS REQ	ANALYSIS REQUESTED				
TURNAROUND TIME:	N lato latnoo	ORGANIC			INORG.			
DATE TIME MATRIX FIELD I.D.	→	BUA			CN	LAB.	LAB I.D. NO.	REMARKS:
12/15/1 Beo W TB 121511	2 X				3	111 2640	40 - WH	· · · · · · · · · · · · · · · · · · ·
7/5/11 OPOS GW HIMW-ISI	4 x	K				-	,	
715/1/110 GW HIMW-15-D	4 X	X					200.	
1/5/1/30 (W HIMW-/4XD	4 X	Х				7	(0)	
(Make)	1		-					
B)								
	v							
					-			
	1		+					
Date Time Received by: (Signa	U Jeans) Date	Time		LABOR	LABORATORY USE ONLY	LY.
2. (をころ) また	1 los. X	7	1/2/1	ろか	Discrepan	Discrepancies Between	Samples were:	1
Delistin Put Received by (Signary	turely)		Date e s	Time W:46	Sample Labels and COC Record? You	ibels and ord? Yor N	2. Ambient or childed, Temp // 3. Received in good condition. If you want to the condition of the condition	and Delivered Arbilis d, Temp // 27c l condition // or N
Batie Time Received by: (Signature)	(eun		Date	Time	Explain:		4. Property preserved (Yor N	MC CAN
elinquished by (Skraature) Date Time Received by (Skraature)	(aut		į				1. Present on outer	COCTEDE WES: 1. Present on outer package: Yorly,
2	D S						2. Unbroken on out	2. Unbroken on outer package. You'st COC record present & complete upon sample receipt:
							John	

WHITE-GREY 4 PSII GINAL

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

labs

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747

TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com KEY-URS 141

Sample Receipt Checklist

Client Name KEY-URS			Date and	Time Receive 12/15/2011 2:4	6:00 PM
Work Order Numbe 111	12642 RcptNo: 1		Received	by Tamika Ricks	
Completed by 12/15 Completed Date: 12/15 Carrier name H2M Pick			viewed by:	2/16/11	
Chain of custody present?			🗆		
	when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees v	-	Yes ✓	No □ No ☑		
	ntified on Chain of custody?	Yes ✓	No 🖳	Not Presen	
is it clear what analyses w	-	Yes 🗹	No 🗆		
				_	
Custody seals intact on sa	•	Yes ∐	No 🗌	Not Presen	30
Samples in proper contain Were correct preservatives		Yes 🗹	No 🗀		
Sample containers intact?		Yes 🗹	No 🗔		
Sufficient sample volume (Yes 🗹	No 🗔		
Were container lables com		Yes ✔ Yes ✔	No 🗌 No 🗀		
All samples received within		Yes 🗹	No 🗌		
Was an attempt made to c	•	Yes 🗹	No 🗆		
All samples received at a t	-	Yes 🗹	No 🗆		
Response when temperatu			140		
Preservative added to bott					
Sample Temp, taken and r	recorded upon receipt?	Yes 🗹	No 🗀	To 4.2	
Water - Were bubbles abs		Yes 🗹	No 🗆	No Vials	
Water - Was there Chlorine	e Present?	Yes	No 🗆	NA 🗹	
Water - pH acceptable upo		Yes 🗹	No 🗆	No Water	
Are Samples considered a	cceptable?	Yes 🗹	No 🗌		
Custody Seals present?		Yes 🗌	No 🗹		
Traffic Report or Packing L	ists present?	Yes 🗌	No 🗹	N. a.	
Airbill or Sticker?		Air Bill 🗹	Sticker	Not Present	
Airbill No:					
Sample Tags Present?		Yes 🗌	No 🗹		
Sample Tags Listed on CO	OC?	Yes 🗌	No 🗹		
Гад Numbers:				9	
Sample Condition?		Intact 🗹	Broken	Leaking	
Case Number:	SDG: KEY-URS141	S	AS:		
		Adio	usted?	Checked b	
Any No and/or NA (not	licable) response must be detailed in	•	-	Onconed b	
any no endroi NA (not app	nicable) response must be detailed in	me comments sec	ction be		

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com

Sample Receipt Checklist

Client Contacted? Contact Mode: Client Instructions: Date Contacted: Regarding:	✓ Yes ☐ No ☐ No ✓ Phone: ☐ Fax: Sample ID is HIMW-14D 12/15/2011	A Person Contacted	l: Megan Dascoli	Comments: 1112642-001A and 001B the sample id on the chain of custody reads as HIMW-14I. On the bottles the sample id is written as HIMW-14D.
CorrectiveAction: Sample HIMW-141 wa	as sampled on lab#1112624-0	04A and 004B.		

575 Broad Hollow Rd, Melville, NY 11747-5076

38818 EXTERNAL CHAIN OF CUSTODY

Tel: (631) 694-3040 Fax: (631) 420-8436	CLIENT:	Ë	282	8	990				H2M SDG	H2M SDG NO: V CULDER V
PROJECT NAME/NUMBER	L	L	F	L		F	H	MOTES.		+ CHOLD (4)
NATIONAL GRID Y QUARTER 2011 EW	191	7								Project Contact:
Sankling		^ا د،	-		-101			-		JON SOMPRINS
11,76098.00004	og e	1.1-	W			-	-			Phone Number:
SAMPLERS: (signature)/Clienţ	imph ied	ን ላና8 .	8w	-		-				716. 923-1207
Land Ocean M. Land Control	s	J. J	Ť	-		_				PIS/Quote #
- Car	1	m(7							
DELIVERABLES: / U)h	1					107.00		
			ANAL	YSIS	ANALYSIS REQUESTED	۵		1		
I URNAROUND TIME: STD	Otal N Contal	ORGANIC	NIC				NORG.			
DATE TIME MATRIX FIELD 1.D.		AQV	BNA	ECB.			CM Netal		ON CLAR	DEMANS.
12/16/11845 6W +114W-125	4	×		L	F	\vdash	+	וסרמוו	- 603	NEWDANG.
Mill 11:20 W TB121611	7	×	3		F	-	╀		1-004	
1416/11 9:50 GW HIMW-12I	7	×	×		F	\vdash	\vdash		700-	
12/4 1120 GW HIMW- 12D	ή	×				\vdash	-	>	180,	
						-	_			
		- 6				_	_			
						-	L			
							_			
			-			_	_			
100		7								
Calle IIITe Received by (Signature)		(2)	4	Date				LABOR	LABORATORY USE ONLY	LY
Time Benindiber (Ste	1			17:10:11	۱ځ	_	screpa	Discrepancies Between	Samples were:	, , , , , , , , , , , , , , , , , , , ,
5 Well 12.16:11 14.53			•	Date 2- 5-1	a Time		C Rev	Sample Labels and COC Record? Yor N	2. Ambient of chilled 3. Received in good	1. Snipped G-Hand Delivered V Airkiis 2. Amblent of Chiles, Temp 日 いこい にと 3. Received in good condition: (Yor N
Relinquished by: (Signature) Date Time Received By: (Sign	nature)			Date		_	Explain:		4. Properly preserved: (Cor N	d: Gorn
		1			-	 -			COC Tape was: 1. Present on outer of	adaoa:(/Parn
	(em			Date	Time	1 1			2. Unbroken on outer package: (Yor N 3, COC record present & complete upon	r package: Vor N int & complete upon sample receipt
						- 1			N	N

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

WHITE COPY - ORIGINAL KEY-URS141 S17

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747

TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com

KEY-URS 141

Sample Receipt Checklist

KEY-URS141 S18

Client Name KEY-UI	RS				Date a	and Time	e Receive	12/16/2011 2:53:00 PM
Work Order Numbe	1112701	RcptNo:	1				MelissaWa	
						,		
G 1	. 1							
	1-11/04				,	- I		
Completed by	50 10 2011			Re	eviewed by:	81	,	
Completed Date:	EC 16 2011			Re	eviewed by: J	12/19	10	9
Carrier name H2M I	<u>Pickup</u>				•	7. 7	,	
Chain of custody prese	ent?		Vac	V	No 🗀			
	ed when relinquished and	received?	Yes		No 🗔			
	es with sample labels?		Yes		No 🗆		Not Presen	
	identified on Chain of cus	tody?	Yes		No 🗆		NOT Fresen	
Is it clear what analyse			Yes		No 🗀			
Custody seals intact or		2		_				
Samples in proper con			Yes		No 🗌		Not Presen	✓
Were correct preserval			Yes	_	No 🗔			
Sample containers inta			Yes		No 🗔			
			Yes	_	No 🗌			
Sufficient sample volur	complete (ID, Pres, Date)	•	Yes	_	No 🗀			
All samples received w		(Yes	_	No L			
Was an attempt made			Yes	_	No 🗌			
	to cool the samples? t a temp. of > 0° C to 6.0°	00	Yes	\equiv	No 🗔			
	rature is outside of range:		Yes		No 🗸			
Preservative added to I		•	Sampl	es we	re collected the	same o	day and chill	ed.
	nd recorded upon receipt?				🗆			
Water - Were bubbles a		•	Yes		No 📙			.1 °
Water - Was there Chic			Yes		No 🗀		No Vials	
Water - pH acceptable			Yes		No 🗀		NA	
Are Samples considere	-		Yes		No 🗀	r	No Water	
			Yes		No 🗌			
Custody Seals present			Yes	_	No 🗀			
Traffic Report or Packir	ig Lists present?		Yes		No 🗹			_
Airbill or Sticker?			Air Bill	\Box	Sticker	ľ	Not Present	\checkmark
Airbill No:				_	_			
Sample Tags Present?			Yes		No 🗹			
Sample Tags Listed on Tag Numbers:	0007		Yes		No 🗹			
-				Ca				
Sample Condition?			Intact	\checkmark	Broken 🗌		Leaking	П
Case Number:	SDG:			S	SAS:			
	KEY-URS	S141						
				Adi	usted?		Ch	ecked b
Any No and/or NA (not	applicable) response mus	t be detailer	in the comme		-			SUNGU D

38808 EXTERNAL CHAIN OF CUSTODY

575 Broad Hollow Rd, Melville, NY 11747-5076

Tel: (631) 694-3040 Fax; (631) 420-8436

	Tel: (631)	694-3041	- 111	CLIENT:	1	URS	3	15	G 20		H2M SDG	H2M SDG NO: NON-1185 141
	PROJECT N Nocham	AMENUA A G	National Grid 402011 GW Sempling		-			-		NOTES:		Project Contact:
		11766	11176098, 00004	ole Conta secription	000	ANG						Phone Number:
	SAMPLERS: (signature)/Client	: (signatun 85/P (\)	SAMPLERS: (signature)/Client John Caste (Jrhan Carpa)/Uff was) yuy	1400			i moderna			716 725 ~ 129 PIS/Quote #
	DELIVERABLES:	LES:		1	01	~ I						
			S.		*	ANALYSIS REQUESTED		STED				
	TURNARQUND TIME:	ND TIME:	Standard	Otal N Contal	ORGANIC	2			INORG.			¥
	DATE TIM	TIME MATRIX	X FIELD I.D.	_	VOA	Peet Peet			CM Wetal	LABL	LAB I.D. NO.	REMARKS:
	50811/12/1	Q 0 1	H(MM-OST	4	X				a deligions	1112-88-9	J00 F	
	14/11/90	3	HIMW-05-5	4	X							
		mb 021	HIMW-20I	4	×					-	2000	3
	=	1130 GM	HIMW -20IZ/MS	4	×							
8	0411 11/24	3	HIMW- 20I /MSD	4	X						<u>-</u>	4
2	7				+		\exists					
)	,	1			1			4				
	0511 Way	3	1112111	7	X					→	100-	
			*	T	+			1	7		(40)	
	Relinquished by: (Signature)	(Signature)		-	-		- 2					
	Maler	Q d	Ja.37	3	A	12.31		12.37		LABOR	LABORATORY USE ONLY	ILY /
	Reling(Jshed by: (Signature)	(Signature)	John Date Time			Date 17-21-11	8 7	Time	Discrepancies Betw Sample Labels and COC Record? You	Discrepances Between Sample Labels and COC Record? Yor N	1. Shipped or Hand Delivered 2. Ambient orichiller, Tamp 5. 6. 3. Received in good condition.	And Delivered Atroits 2. Temp 5.6° 1.3° 0.20 d condition: Yor N
	Relinquished by: (Signature)	(Signature)	Date Time Received by (Signature	2		Date		e L	Explain:		4. Property preserv	
	Relinquished by. (Signature)	Signature)	Date Time Received by: (Signature)	e e		Date	-	E L			1. Present on outer	COC Tabe was: 1. Present on outer package: (*) pr N 2. Unbroken on outer package: (*) p. N
											3. COC record pres	3. COC record present & complete upon sample receipt:
								I				

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

WHITE COPY - ORIGINAL KEY-URS141 S24

labs

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com KEY-URS 141

KEY-URS141 S25

Sample Receipt Checklist

Client Name KEY-URS				Date and Tin	ne Receive	12/21/2011 3:42:00 PM
Work Order Numbe 111	2889 Ropth	No: 1		Received by		
	•			received by	Menssavva	uson
1/-	to to			5		
Completed by	WWC		R	eviewed by:		55
Completed Date: BEC	11 2011			eviewed Date: 12	2/11	
			i.N	eviewed Date: 12/2	-411	
Carrier name <u>H2M Pick</u>	пБ					
Chain of custody present?		Yes	s 🗸	No 🗀		
Chain of custody signed w	hen relinquished and receive		s 🗸	No 🗆		
Chain of custody agrees w	ith sample labels?	Yes	s 🔽	No 🗆	Not Presen	
Are matrices correctly ider	ntified on Chain of custody?	Yes	s 🗸	No 🗆	11011 100011	
Is it clear what analyses w	ere requested?	Yes		No 🗆		
Custody seals intact on sa	mple bottles?	Yes	s 🗆	No 🗆	N. d D	
Samples in proper contain		Yes		No 🗔	Not Presen	\checkmark
Were correct preservatives		Yes		No 🗆		
Sample containers intact?		Yes		No 🗆		
Sufficient sample volume f	or indicated test?	Yes		No 🗆		
Were container lables com		Yes	_	No □		
All samples received within		Yes	_	No 🗆		
Was an attempt made to co		Yes		No 🗆		
All samples received at a to		Yes	_	No ☑		
Response when temperatu				ere collected the same	day and chill	lod
Preservative added to bottl				no concoted the same	day and chi	led.
Sample Temp, taken and re	ecorded upon receipt?	Yes	V	No 🗌	5.6 To 7	',3 °
Water - Were bubbles abse		Yes		No 🗆	No Vials	.5
Water - Was there Chlorine		Yes		No 🗆	NA NA	▽
Water - pH acceptable upor	n receipt?	Yes	V	No 🗆	No Water	
Are Samples considered ac	ceptable?	Yes	V	No 🗀	110 110101	_
Custody Seals present?		Yes		No 🗆		<
Traffic Report or Packing Li	sts present?	Yes	=	No 🗹		
Airbill or Sticker?		Air Bill	_	_	Not Present	
Airbill No:		7 2			HOLF ICSCIL	•
Sample Tags Present?		Yes	П	No 🗹		
Sample Tags Listed on CO	C?	Yes	_	No 🗹		
Tag Numbers:						
Sample Condition?		Intact	V	Broken 🗌	Leaking	
Case Number:	SDG:		5	SAS:	_	
	KEY-URS141		•			
			-	justed?	Che	ecked b
Any No and/or NA (not appl	cable) response must be de	tailed in the comme	nts se	ction be		

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

38817 EXTERNAL CHAIN OF CUSTODY

Tel: (631) 694-3040 Fax: (631) 420-8436	436	CLIENT:	NT: 1.8	5/5/	9		H2M SDG	H2M SDG NO: VEN. NOC IN	
PROJECT NAME/NUMBER			L	Ŀ	T	NOTES	1	Project Contact:	_
Nothouse Grid 402011 GW Sampling	GW Samplife		Ĩ					Jou Sundquist	
11176898.00004	7000	e Conf	Des Joen					Phone Number:	_
SAMPLERS: (signature)/Client	,		P P					716 723 1207	
ISHN CRESPO (phulup) / URS COND.	/ UPS COND.	s 1	0m2 L a					PIS/Quote #	
DELIVERABLES:			1						_
			ANAL	ANALYSIS REQUESTED	JESTED				
TURNAROUND TIME: Stangard		N Isto Sonta	ORGANIC			INORG.		til ;⊲	
TIME MATRIX	FIELD I.D.		VQA PeeV	BCB		Metal	LAB I.D. NO.	REMARKS:	
0-50-MW1+1 MO 008 MAZY1	OSD	4	×				12938- (D)		-
1925 GW	20.5	4	XX				1 - 022		-
	\(\frac{1}{2}\)								
172187 W TB12221		ત	×				个 - (05		
>									
0	Time Received by (Signature)	_ `	1	Date	Time		LABORATORY USE ONLY	INTA	
(Megan Manot "Proffee	1242	~	333	12.2.	12.43	Discrepancies Between	Samples wen	Α	
Kams	Time Received by (S)	(gratture)		Date	Time /3>d)	Sample Labels and COC Record? Yor N		1. Shipped of rand Defivered A Arbilities 2. Ambient of chilled; Temp 17.170. 3. Received in good condition: (V or N	
Relinquished by: (Signature) Date		(eng		Date	E E	Explain:	4. Properly preserved	wed your	
							1. Present on outs	r package: Y or M.	
Relinquished by: (Signature) Date	Time Received by: (Signature)	(ture)		Date	Time		2. Unbroken on ou	2. Unbroken on outer package: Yorking 2. COC record present & complete upon sample receipt:	
						The second secon	Z		

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

WRITE CORS 14 PRIGINAL

H2M LABS INC 575 Broad Hollow Road Melville. NY 11747

TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com

Key-US 141 Sample Receipt Checklist

Client Name KEY-URS Date and Time Receive 12/22/2011 1:40:00 PM Work Order Numbe 1112938 RcptNo: 1 Received by Tamika Ricks Reviewed by: Completed Date: 12/22/11 Reviewed Date: Carrier name H2M Pickup Chain of custody present? No 🖂 Yes 🗸 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗔 Not Presen Are matrices correctly identified on Chain of custody? Yes 🗸 No 🗌 Is it clear what analyses were requested? Yes 🗸 No 🗔 Custody seals intact on sample bottles? Yes \square No 🗌 Not Presen Samples in proper container/bottle? Yes 🗹 No 🗌 Were correct preservatives used and noted? Yes 🗸 No 🗌 Sample containers intact? Yes 🗹 No 🗆 Yes 🗹 Sufficient sample volume for indicated test? No 🗆 Were container lables complete (ID, Pres. Date)? Yes 🗸 No 🗔 All samples received within holding time? Yes 🗹 No 🗆 Was an attempt made to cool the samples? Yes 🗹 No 🔲 All samples received at a temp. of > 0° C to 6.0° C? Yes No 🗹 Response when temperature is outside of range: Samples were collected the same day and chilled. Preservative added to bottles: Sample Temp. taken and recorded upon receipt? Yes 🗹 No 🗌 To 10.8° Yes 🗸 No 🗆 Water - Were bubbles absent in VOC vials? No Vials L Water - Was there Chlorine Present? Yes No 🗆 V NA Water - pH acceptable upon receipt? Yes 🔽 No 🗆 No Water Are Samples considered acceptable? Yes 🗹 No 🗆 Yes 🗌 **Custody Seals present?** No ✓ Traffic Report or Packing Lists present? Yes No 🗸 Airbill or Sticker? Air Bill 🗀 Sticker Not Present Airbill No: Sample Tags Present? Yes No 🗸 Sample Tags Listed on COC? No 🗹 Yes Tag Numbers: Sample Condition? Intact 🗹 Broken Leaking Case Number: SDG: SAS: KEY-URS141 Adjusted? Any No and/or NA (not applicable) response must be detailed in the comments section be

H2M LABS, INC.

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 12/19/11, 12/20/11 & 12/28/11 SDG #: KEY-URS143

For Sample(s):

HIMW-22	TB121911	HIMW-08D
HIMW-23	HIMW-03D	HIMW-08I
HIMW-24	HIMW-03I	HIMW-08S
HIMW-25	HIMW-03S	FB122811
DUP121911	TB122011	TB122811

The above sample(s) was/were analyzed for a select list of volatile organic analytes (BTEX) by EPA method 8260B.

All Q.C. data and calibrations met the requirements of the method, unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

No matrix spike/matrix spike duplicate (MS/MSD) was submitted. Lab fortified blanks were analyzed and indicate good method efficiency. All compounds recovered within Q.C. limits.

Samples HIMW-24 and DUP121911 were reanalyzed at a dilution due to concentration levels of targeted analytes above the calibration range.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: January 13, 2012

MAA_

Joann M. Slavin Senior Vice President

H2M LABS, INC.

SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 12/19/11, 12/20/11 & 12/28/11 SDG #: KEY-URS143

For Sample(s):

HIMW-22	HIMW-03I
HIMW-23	HIMW-03S
HIMW-24	HIMW-08D
HIMW-25	HIMW-08I
DUP121911	HIMW-08S
HIMW-03D	FB122811

The above sample(s) was/were analyzed for a select list of semivolatile organic analytes (polynuclear aromatics) by EPA method 8270C.

All QC data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

No matrix spike/matrix spike duplicate was submitted. All percent recoveries and RPDs were met. Lab fortified blanks were analyzed and indicates good method efficiency. All compounds recovered within or above Q.C. limits.

Samples HIMW-24 and DUP121911 were reanalyzed at a dilution due to concentration levels of analytes above the calibration range. Both sets of data are submitted.

Pyrene and chrysene had a %RSD greater then 20.5% in the initial calibration. Linear regression was used.

Chrysene had a %D greater than 15% in the continuing calibration of 1/11/12 and 1/13/12.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: January 13, 2012

Joann M. Slavin

Senior Vice President

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

38806 EXTERNAL CHAIN OF CUSTODY

575 Broad Hollow Rd, Melville, NY 11747-5076									547	
	CLIENT:	î.	URS	رور	9			H2M SD	SDG NO: KEY-URSHA	Г
PROJECT NAMENUMBER Notional Grid 4422011 GW Samphip							NOTES		Project Confact: "Co-11	
14176398.00004	atno Conta notipiton	Ber	mg						Phone Number:	
/ / / / /		n & cl	ans						PIS/Quote #	\neg
DELIVERABLES:	†	10%	81				359			
,			ANALYSIS REQUESTED	IS REQ	JESTEC		Ī		94	
TURNAROUND TIME:	/ Leto Onte	ORGANIC	S	-		INORG	sc.			-
DATE: TIME MATRIX FIELD I.D.	_→	AOV	PCB Pest			Metal	СИ	LAB I.D. NO.	REMARKS:	
146/11 850 W TB 121911	4	×	-	H			111277	900 - 511		_
17/9/11 850 GW HIMW-24	4	X	×					1 - 003		_
1115 GW	4	×	×					-00J		7
4M	4	\ \ X	×					100-		r
13/4/11 1500 CW HIMM-25	4	×	Ų					100-		_
				+						_
11 61 61 A DO W 10 ANY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	<u>×</u>	1	-	\pm	I	+	500		
				7						_
ignature) Date	(eun	(+	-	Date			Z	LABORATORY USE ONLY	, , , , , , , , , , , , , , , , , , ,	_
19/11 15.18	ار	3		12.19-11	15.18	Disc	Discrepancies Between	_		_
Relinquighed by: (Signature) Styles Date Time Received by: (Signature) 12.19.11 16.23	(eun	. 1		Date Time (2-14-1) 1423	71me 1423	Sam	Sample Labels and COC Record? Yor N		1. Shipped of rand Delivered of Ambliff 2. Ambert of chilled, Temp. 4.3 °C av. 1.C 3. Received In-geod condition Y or N	
Relinquished by: (Signature) Date Time Received by: (Signat	(eur			Date	Time	EXPIAIN:	ain:	4. Property prese		_
								1. Present on outer package:	Marth	
Relinquished by: (Signature) Date Time Roceived by: (Signature)	(e.r			Date	Time	11		2. Unbroken on outer package:	wher package: () or M 1,1-19-11 seent & complete upon sample receipt:	
								<u>ا</u>		-

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

WHITE-GREY 143 PRISINAL

HZM LABS, INC.

38807 EXTERNAL CHAIN OF CUSTODY

575 Broad Hollow Rd, Melville, NY 11747-5076

Tel: (631) 694-3040 Fax: (631) 420-8436

COC Tape was:

1. Present on outer package. Yor N

2. Unbroken on outer packager. Yor N

3. COC record present & complete upon sample receipt: HZM SDG NO: KEY-UWS 143 716 923-1207 Jan Sungquist 1. Shipped of Hand Delivered Airbill#
2. Ambient ordvilled, Temp 1, 9 °C an 1 Ce
3. Received in good condition: X or N
4. Property preserved (Y) or N REMARKS: Project Contact: Phone Number: PIS/Quote # LABORATORY USE ONLY 1003 - 604 700-1112841-001 LAB I.D. NO. Discrepancies Between COC Record? Yor N NOTES: Sample Labels and CM Explain: Metal 12-20-11 15:45 ANALYSIS REQUESTED Time 12.20-11 13.56 Time 130 URS GR Date Date Date Date Post/ ORGANIC 43 7°5 δ AN8 汉 CLIENT: AQV X Description 4 t Sample Container to .oM lasoT Received by: (Signature) Received by: (Signature) Received by: (Signature) URS GR Notional and 402011 MSame Time 18.20-11 15.45 3.56 ⊒ ⊒ TIME E L FIELD I.D. Standard HI MW-030 HIMW-035 12.20.1 HIMM-03I 40000, 840 25111 Safe Date Date TB 1220 JOHN CRESPO (JUL- CUMO) Sale Control 25 SAMPLERS: (signature)/Client TIME MATRIX 3 930 GW TURNAROUND TIME: 3 inquished by, (Signature) quished by: (Signatule) Relinquished by: (Signature) Relinquished by. (Signature) DELIVERABLES The Inter 1135 1245 3 DATE 配 Jack. 7,74

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

WHITE GRISH 43 CAIRGINAL

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747 TEL: 631-694-3040 FAX: 631-420-8436

Website: www.h2mlabs.com

KEY-URS 143

Sample Receipt Checklist

Client Name KEY-URS		Date and Ti	me Receive	12/20/2011 3:45:00 PM	
Work Order Numbe 1112841 RcptNo: 1		Received by	/ MelissaWat	tson	
1 A LAFORT					
Completed by	Revie	wed by: SA		*	
ore 2 g 7011			1		
Completed Date: ULC 12	Revie	wed Date: 12	21/11		
Carrier name H2M Pickup		•			
Chain of custody present?	Yes 🗹	No 🗔			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗆	Not Presen		
Are matrices correctly identified on Chain of custody?	Yes 🗹	No 🗌			
Is it clear what analyses were requested?	Yes 🗹	No 🗆			
Custody seals intact on sample bottles?	Yes 🗌	No 🗔	Not Presen	\checkmark	
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Were correct preservatives used and noted?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗹	No 🗔			388
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
Were container lables complete (ID, Pres, Date)?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗀			
Was an attempt made to cool the samples?	Yes 🗹	No 🔲			
All samples received at a temp. of > 0° C to 6.0° C?	Yes 🗌	No 🗹			
Response when temperature is outside of range:	Samples were	collected the sam	ie day and chil	led.	
Preservative added to bottles:	-				
Sample Temp. taken and recorded upon receipt?	Yes 🗹	No 🔲	T o 7	7.9 ⁰	
Water - Were bubbles absent in VOC vials?	Yes 🗹	No 📙	No Vials		
Water - Was there Chlorine Present?	Yes 📙	No 📙	NA	$ \mathbf{V} $	
Water - pH acceptable upon receipt?	Yes 🗹	No 📙	No Water		
Are Samples considered acceptable?	Yes 🗸	No 🗆		2	
Custody Seals present?	Yes 🗹	No 🗌			
Traffic Report or Packing Lists present?	Yes 📙	No 🗹		_	
Airbill or Sticker?	Air Bill	Sticker 🗌	Not Present		
Airbill No:		_			
Sample Tags Present?	Yes 📙	No 🗹			
Sample Tags Listed on COC?	Yes 🗌	No 🗹			
Tag Numbers:		(-3			
Sample Condition?	Intact 🗹	Broken 🗔	Leaking	L.J	
Case Number: SDG:	SA	S:			
KEY-URS143					
	Adiu	sted?	Ch	necked b	
Any No and/or NA (not conlicable) concerns must be detailed in				1001104 0	
Any No and/or NA (not applicable) response must be detailed in	the comments sect				

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

38816 EXTERNAL CHAIN OF CUSTODY

Tel: (631) 694-3040 Fax: (631) 420-8436	CLIENT:		URS	3	8			H2M SDG	H2M SDG NO: KEA-1148 14-3	
PROJECT NAMENUMBER AQ2011 GW Sampling	200-33	3					NOTES:		Project Contact	
1176098,00004 SAMPLERS: (signature)/Client	atnoO elqm noliqhosed	Ba	rosw		-,				Phone Number: 716-923-1257	
Sold CAESPO (URS)/ Whilmpo	* S		8 or						PIS/Quote #	
DELIVERABLES:		*					T			
TURNAROUND TIME: Standard	oM lato Intahno	ORGANIC	S S	- NEC	TOES IEI	INORG	<u>ق</u> [
DATE TIME MATRIX FIELD I.D.		AQV	POB POB POB			Metal	CN LAB	LAB I.D. NO.	REMARKS:	·
1728/11150 GW HIMM-08S	4	X X					1112 A3	137,003		
12/28/1055 CW #1MW-08I	4	××						700-		
1786418915 GW HIMW-08D	#	XX	3	+				100-		
	į,	\dashv	_	+	1	1				-
3	K	X	-	-				- 005		
14911(225 W FB122811	4	낅		\dashv			7	+00-		
		\dagger	4	+	1					
		+	-	+						
Date Date	(eng	G		Date			LABO	LABORATORY USE ONLY	LY	
15.13	ر د د			11-82-21	1 13.13	Discr	Discrepancies Between	-		
SULT 12-28-11 15.08	ture)	·		Date 1228-1	Time [5.08]	Sam	Sample Labels and COC Record? Yor N	2. Amblent or chilled Temp 9.1 = C. 3. Received in good condition: (For N	2. Ambient or (Ailleg) Temp 9, 1°C on 1°C 3. Received in good condition: (**) N	
Relinquished by: (Signature) Date Time Received by: (Signature)	(eun)			Date				- Property preserve	ed: (Corn	
Refinquished by: (Signature) Date Time Received by: (Signature)	(pue)			Date				1. Present on outer	1. Present on outer package: You'N	
								3 COC record pres	3. COC record present & complete upon sample receipt:	

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

WHITE-GREY 4 SPRIGINAL

H2M LABS INC 575 Broad Hollow Road Melville, NY 11747

TEL: 631-694-3040 FAX: 631-420-8436 Website: www.h2mlabs.com

KEY-UPS 143 Sample Receipt Checklist

Client Name KEY-U	iks			Date and 1	Time Receive 12/28/20	11 3:08:00 PM
Work Order Numbe	1112A37	RcptNo: 1		Received I	by MelissaWatson	
Completed by	AWall		Re	viewed by: \$\frac{1}{2}	laolu	
Completed Date:	12-28-11		Ke	viewed Date: 12	1/29/11	
Carrier name <u>H2M</u>	Pickup					
Chain of custody pred Chain of custody sign Chain of custody agre Are matrices correctly Is it clear what analyst	ned when relinquis ees with sample la y identified on Cha	bels? in of custody?	Yes Yes Yes Yes Yes Yes Yes Yes	No	Not Presen	
Custody seals intact Samples in proper co Were correct preserv Sample containers in Sufficient sample vol	on sample bottles entainer/bottle? atives used and n tact?	? oted?	Yes V Yes V Yes V Yes V Yes V	No	Not Presen ✓	
Were container lables All samples received Was an attempt mad All samples received Response when temp	within holding time to cool the samp at a temp. of > 0°	e? les? C to 6.0° C?	Yes Yes Yes Yes Yes Samples we	No ☐ No ☐ No ☐ No ✔	me day and chilled.	
Preservative added to Sample Temp. taken Water - Were bubble: Water - Was there Cl Water - pH acceptabl Are Samples conside	o bottles: and recorded upo s absent in VOC v nlorine Present? e upon receipt?	n receipt?	Yes 🗹 Yes 🖸 Yes 🖸 Yes 🗹 Yes 🗹	No	To 9.1 ° No Vials □ NA V No Water □	
Custody Seals prese Traffic Report or Paci Airbill or Sticker? Airbill No: Sample Tags Presen	king Lists present	,	Yes Yes Air Bill Yes	No ☑ No ☑ Sticker ☐ No ☑	Not Present ✓	
Sample Tags Listed of Tag Numbers:			Yes 🗌	No 🗹	🗆	
Sample Condition? Case Number:		SDG: KEY-URS143	Intact 🗹	Broken ☐ SAS:	Leaking 🗔	
			A	djusted?	Checked b	
Any No and/or NA (ne	ot applicable) resp	onse must be detailed in	the comments s	ection be	***	

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: H2M LABS INC Contract:

Lab File ID: 2\N49422.D DFTPP Injection Date: 01/11/12

DFTPP Injection Time: Instrument ID: HP5973N 10:22

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	39.6
68	Less than 2% of mass 69	0.4 (1.1)1
69	Mass 69 relative abundance	40.4
70	Less than 2% of mass 69	0.2 (0.5)1
127	40.0 - 60.0% of mass 198	50.3
197	Less than 1% of mass 198	0.0
198	Base peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	6.3
275	10.0 - 30.0% of mass 198	24.2
365	Greater than 1% of mass 198	4.1
441	Present, but less than mass 443	11.5
442	40.0 - 110.0% of mass 198	68.3
443	17.0 - 23.0% of mass 442	12.7 (18.6)2
-Valu	e is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

Γ	EPA	LAB	LAB	DATE	TIME
44	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	SSTD025	SSTD025	2W49423.D	01/11/12	10:37
02	LFB-33030	LFB-33030	2\N49430.D	01/11/12	14:04
03	HIMW-03D	1112841-001B	2\N49431.D	01/11/12	14:35
04	HIMW-031	1112841-002B	2\N49432.D	01/11/12	15:05
05	HIMW-03S	1112841-003B	2\N49433.D	01/11/12	15:36
06	MB-33098	MB-33098	2\N49434.D	01/11/12	16:07
07	LFB-33098	LFB-33098	2\N49435.D	01/11/12	16:38
08	HIMW-08D	1112A37-001B	2\N49436.D	01/11/12	17:08
09	HIMW-08I	1112A37-002B	2\N49437.D	01/11/12	17:39
10	HIMW-08S	1112A37-003B	2\N49438.D	01/11/12	18:10
11	FB122811	1112A37-004B	2W49439.D	01/11/12	18:41

7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS143

Instrument ID: HP5973N Calibration Date: 1/11/201 Time: 10:37

Lab File ID: 2\N49423.D Init. Calib. Date(s): 12/12/11 12/12/11

EPA Sample No. (SSTD050##): <u>SSTD025</u> Init. Calib. Times: <u>13:46</u> <u>16:25</u>

GC Column: Rxi-5SILMS ID: 0.25 (mm)

			MIN		MAX
COMPOUND	RRF	RRF50	RRF	%D	₹D
Naphthalene	1.019	1.018		-0.1	
2-Methylnaphthalene	0.716	0.688		-3.9	
Acenaphthylene	1.819	1.812		-0.4	
Acenaphthene	1.207	1.183		-2.0	20.0
Fluorene	1.285	1.273		-0.9	
Phenanthrene	1.148	1.185		3.3	
Anthracene	1.183	1.210		2.2	
Fluoranthene	1.216	1.242		2.1	20.0
Pyrene	1.205	1.232		2.2	
Benzo(a)anthracene	1.185	1.222		3.1	
Chrysene	1.087	1.318	(21.2)
Benzo(b)fluoranthene	1.602	1.617		0.9	
Benzo(k)fluoranthene	1.283	1.415		10.3	
Benzo(a)pyrene	1.351	1.416		4.8	20.0
Indeno(1,2,3-cd)pyrene	1.611	1.682		4.4	
Dibenzo(a,h)anthracene	1.310	1.390		6.1	
Benzo(g,h,i)perylene	1.354	1.317		-2.7	

APPENDIX B SOIL VAPOR SAMPLING DATA (GEI CONSULTANTS)

Table X Analytical Soil Vapor Results Hempstead Former MGP Site Hempstead, New York

Age				Hempstead,	New TOIK				
Convoluence 220 - 12 February 200-11 200-1		NYSDOH Background				Soil Vapor			
Construction Cons		Outdoor Air	HIVP-16	HI\/P-17	HIVP-18	HIVP-18	HIVP-19	HIVP-20	HIVP-21
### Serges \$60000000000	Constituents							1 20	2.
### A STATE OF THE PROPERTY OF			9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011	9/28/2011
Secretary 1,000	DTEV (control 3)	Range							
Table		06-58	1 28 11	1 28 11	1 28 11	1 28 11	1 28 11	1 28 11	1 28 11
Carbonare									
A. System									
Control Cont	m,p-Xylene								
Accordate APE 124 14 224 143 133 229 222	o-Xylene	<0.25 – 2.5	1.74 U	1.74 U	1.74 U	1.74 U	1.74 U	1.74 U	1.74 U
April	Other VOCs (µg/m³)								
According	Acetaldehyde								
Age changes									
Secondonlaries NE									
Semonterinstein									
Secondarian									
1.5 Doublewer NE	Bromoform	NE			4.14 U		4.14 U		4.14 U
Substrace	Bromomethane								
2-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-									
Solid accord NE 3.58									
Carbon controlifies									
Carbon terrenhotide - 0.25 - 1.6 1									
Chemomerane									
Charontem	Chlorobenzene								
Chemometerane	Chloroethane								
2.6 2.6 2.8	Chloroform								
Confunctions	Chloromethane								
Cycohescene									
Net									
Debromschronemene									
12.0Eventementenee	Dibromochloromethane	<0.25							
1.3-Dichriorosenzene	1,2-Dibromoethane								
1,4-Denterbereneme	1,2-Dichlorobenzene								
Dichlorodituromethane									
11-Delintoreshane									
12-Deichrorehame									
1.58 U 1									
1.1-Dichkforophene	cis-1,2-Dichloroethene								
12-Dehicropropene	trans-1,2-Dichloroethene								
1.44 U	1,1-Dichloroethene								
Trans-1,3-Dichloropropen color=17.6 2.79 U 1.6 J 2.79 U 2.27 J 1.91 J 2.74 J 2.79 U 1.4-Dioxane 3.3 - 2.20 3.77 U 4.24 7.5 8.16 40.5 24.3 14.2 1.8-Dioxane NE 1.84 U 1									
1.4-Dioxane									
NE									
Ethydhiophene									
PEMyriducine		NE							
Interpretation									
Hexachirobutadiene	. ,								
n-Hexane NE 1.93 U 1.94 U 1.9									
2-Hexanone									
Indane									
Indene									
A-Methyk2-pentanone	Indene								
Methylene chloride	Methyl tert-butyl ether								
1-Methy/naphthalene									
NE									
2-Methythiophene C2-10									
3.Methylthiophene									
Nonane	3-Methylthiophene	<0.25 – 1.2	2.1 U				2.1 U	2.1 U	2.1 U
n-Octane NE 2.46 U 3.29 3.44 3.93 8.43 5.14 7.2 Pentane									
Pentane	Nonane								
2-Propanol NE									
Styrene									
1,1,2,2-Tetrachloroethane									
Tetrachloroethene									
Thiophene NE	Tetrachloroethene							R	
1,1,2-Trichloro-1,2,2-trifluoroethane <0.25 - 3.6	1,2,4,5-Tetramethylbenzene								
1,2,4-Trichlorobenzene <0.25 - 4.8	Thiophene								
1,1,1-Trichloroethane <0.25 - 0.7									
1,1,2-Trichloroethane <0.25 2.18 U 2.15 U 3.15 U 1.97 U									
Trichloroethene <0.25 - 0.5 2.15 U 2.17 U 1.97 U									
Trichlorofluoromethane <0.25 - 6.1 1.08 J 0.91 J 1.35 J 1.44 J 2.17 J 1.86 J 4.03 1,2,4-Trimethylbenzene <0.25 - 0.6	Trichloroethene								
1,3,5-Trimethylbenzene <0.25 - 2.5 0.846 J 0.826 J 0.826 J 0.993 J 0.865 J 0.816 J 0.708 J 1,2,3-Trimethylbenzene <0.25 - 1	Trichlorofluoromethane								
1,2,3-Trimethylbenzene <0.25 - 1	1,2,4-Trimethylbenzene								
2,2,4-Trimethylpentane <0.25 - 2	1,3,5-Trimethylbenzene								
n-Undecane									
Vinyl bromide NE 1.75 U 1.75									
Vinyl chloride <0.25 1.02 U									
Other (%)	Vinyl chloride								
	Other (%)								
	Helium	NE	0.016 U	0.018 U	0.014 U	0.017 U	0.017 U	0.015 U	0.018 U

Notes:

Analytes in blue are not detected in any sample

μg/m³ - micrograms per cubic meter

BTEX - benzene, toluene, ethylbenzene, and xylenes

VOCs - volatile organic compounds

NYSDOH - New York State Department of Health

¹ Source: NYSDOH, October 2006. Summary of Indoor and Outdoor Levels of Volatile Organic Compounds from Fuel Oil Heated Homes reported in various locations within sampled homes in NYS, 1997-2003. Background values for naphthalene are from the NYSDOH 1997 Control Home Database presented in Table C3 of the NYSDOH 2006 Guidance.

NE - not established

NA - not analyzed

Bolding indicates a detected result concentration

Shading and bolding indicates that the detected concentration is above the NYSDOH guidance it was compared t

Validation Qualifiers:

- J estimated value
- U indicates not detected to the reporting limit
- UJ not detected at or above the reporting limit shown and the reporting limit is estimated
- R rejected

APPENDIX C OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

SYSTEM #1

Ti Wea Outdoor T Inside Trailer	ate: me: ather: emperature: Temperature: med By:	13 Su ~4 ~7	8/2011 808 nny 8°F 0°F	- - - -							
	O ₂ Gen	erator (Air	Sep)				Compress	or (Kaesar Rot	ary Screv	v)	
Hours			2,116.8	-	Compres	sor Tank *			105		(psi)
Feed Air Press Cycle Pressure			90	(psi)	Delivery Element	,		w are made fror	110 172	panel)	(psi) (°F)
Oxygen Receiv	er Pressure *			105 (psi)	Running Loading				2,376 1,586		(hours)
Oxygen Purity * maximum readin	g during loading cyc	cle	98.8	(percent)	* maximum	reading during	loading cycle				
	Injection Ba	nk 1		O ₂ II	Injection				Injection	Rank 3	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	32	32	OW-1-5S	67.3	35	19	OW-1-9D	88.5	OFF	OFF
OW-1-2	96.5	30	32	OW-1-6S	67.0	30	18	OW-1-10D	87.2	OFF	OFF
OW-1-2	96.5 96.3	30 40	32	OW-1-6S OW-1-7S	67.0 66.9	30	18	OW-1-10D	87.2 86.1	OFF OFF	OFF OFF
OW-1-3	96.3	40	32	OW-1-7S	66.9	20	18	OW-1-11D	86.1	OFF	OFF
OW-1-3	96.3 95.0	40	32	OW-1-7S	66.9	20 OFF	18 OFF	OW-1-11D	86.1 85.3	OFF OFF	OFF OFF
OW-1-3 OW-1-4	96.3 95.0 93.9	40 40 30	32 31 30	OW-1-7S OW-1-8S	66.9 66.7 66.0	20 OFF 25	18 OFF 19	OW-1-11D OW-1-12D OW-1-13D	86.1 85.3 84.7	OFF OFF	OFF OFF
OW-1-3 OW-1-4 OW-1-5D OW-1-6D	96.3 95.0 93.9 92.4	40 40 30 30	32 31 30 30	OW-1-7S OW-1-8S OW-1-9S OW-1-10S	66.9 66.7 66.0 54.6	20 OFF 25 30	18 OFF 19 14	OW-1-11D OW-1-12D OW-1-13D OW-1-14D	86.1 85.3 84.7 84.1	OFF OFF OFF	OFF OFF OFF

SYSTEM #1

				O ₂ In	jection Sy	ystem #1					
	Injection Ba	ınk 4			Injection	Bank 5			Injection	Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	15	14	OW-1-17D	79.5	OFF	OFF	OW-1-21S	49.3	30	12
OW-1-14S	52.7	18	15	OW-1-18D	78.3	OFF	OFF	OW-1-22S	49.3	30	12
OW-1-15S	52.2	15	14	OW-1-19D	78.9	OFF	OFF	OW-1-23S	48.8	30	12
OW-1-16SR	51.8	OFF	OFF	OW-1-20D	79.5	OFF	OFF	OW-1-24S	48.4	30	13
OW-1-17S	50.7	OFF	OFF	OW-1-21D	79.5	OFF	OFF	OW-1-25S	48.8	28	14
OW-1-18S	50.2	20	13	OW-1-22D	79.5	OFF	OFF	OW-1-26SR	48.3	35	14
OW-1-19S	49.7	25	14	OW-1-23D	78.7	OFF	OFF	OW-1-27S	48.3	35	14
OW-1-20S	49.3	30	14	OW-1-24D	78.2	OFF	OFF	OW-1-28S	48.3	28	15
				et flow rate of ~30 s				no greater than the p	pressures prov	vided in the hyd	lrostatic
	tables prepared by	URS Corporation		ng readings. Injecti	on times at B	ank #5 were se		no greater than the p			lrostatic
	tables prepared by Injection Ba	URS Corporation	on after collecti	ng readings. Injecti	on times at B	ystem #1 Bank 8	t at 3 minutes.	no greater than the p	Injection	Bank 9	
omments:	tables prepared by	URS Corporation		ng readings. Injecti O2 In	on times at B	ank #5 were se					ps 29
ID ID	Injection Ba Depth	urs Corporation	psi	O ₂ In	jection Sy Injection Depth	sank #5 were se ystem #1 Bank 8 scfh	t at 3 minutes.	ID	Injection Depth	Bank 9	ps
ID OW-1-25D	Injection Ba Depth 78.1	unk 7 sefh 30	psi 27	O2 In ID OW-1-29S	ijection Sy Injection Depth 48.5	sank #5 were se ystem #1 Bank 8 scfh 30	psi 13	ID OW-1-33D	Injection Depth 83.2	Bank 9 sefh 40	
ID OW-1-25D OW-1-26D	Injection Ba Depth 78.1	unk 7 sefh 30	psi 27 32	O2 In ID OW-1-29S OW-1-30S	Injection Sy Injection Depth 48.5	sank #5 were se ystem #1 Bank 8 scfh 30 30	psi 13	ID OW-1-33D OW-1-34D	Injection Depth 83.2 84.5	Bank 9 scfh 40 30	29 30
ID OW-1-25D OW-1-26D OW-1-27D	Injection Ba Depth 78.1 78.1	unk 7 scfh 30 50 60	psi 27 32 35	O2 In ID OW-1-298 OW-1-308	Jection Sylvantimes at Bulletion Sylvantimes at Sylvantimes at Bulletion Sylvantimes at Sylvantimes a	ank #5 were se ystem #1 Bank 8 seft 30 30	psi 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Injection Depth 83.2 84.5 85.0	Bank 9 scfh 40 30 60	98 299 300 299
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Ba Depth 78.1 78.1 77.9 78.0	30 50 60 30	psi	O2 In ID OW-1-29S OW-1-30S OW-1-31S	Injection Sylvanian August 1985 Injection Sylvanian August 1985 Injection Depth 48.5 48.8 49.3 49.3	ank #5 were se system #1 Bank 8 scfh 30 30 30 32	psi	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injection Depth 83.2 84.5 85.0 85.0	Bank 9 scfh 40 30 60 34	29 30 29
ID OW-1-25D OW-1-26D OW-1-27D OW-1-27D OW-1-28D OW-1-29D	### Tables prepared by Injection Ba Depth ### 78.1 ### 77.9 ### 78.0 ### 78.4 ### 78.5 ### 78.6	scfh 30 50 60 30 40	psi 27 32 35 27 27	O ₂ In ID OW-1-298 OW-1-318 OW-1-328 OW-1-338	Injection Sylvanian Injection Sylvanian Injection Depth 48.5 48.8 49.3 49.3 49.7	ank #5 were se system #1 Bank 8 scfh 30 30 30 30 30 30	psi 13 13 13 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injection Depth 83.2 84.5 85.0 85.0 84.0	Bank 9 scfh 40 30 60 34	29 30 29 30 30

SYSTEM #1

				O ₂ Ir	ijection S						
	Injection Ba	nk 10			Injection	Bank 11			Injection	Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	25	12	OW-1-41D	73.6	OFF	OFF	OW-1-43	67.4	OFF	OFI
OW-1-38S	50.6	25	13	OW-1-42D	71.0	OFF	OFF	OW-1-44	66.6	38	19
OW-1-39S	50.7	40	12	OW-1-45	65.7	40	20	OW-1-51R	60.6	30	18
OW-1-40S	51.1	30	14	OW-1-46	64.3	30	18	OW-1-52	59.3	40	17
OW-1-41S	51.5	50	14	OW-1-47	63.4	30	18	OW-1-53	60.0	25	18
OW-1-42S	51.3	40	13	OW-1-48	62.5	28	18	OW-1-54	60.0	30	17
				OW-1-49	61.5	30	17				
							10				
	All injection point tables prepared by			ig readings. Injecti	on time at Ba	ank #11 was set		o greater than the p	pressures pro	vided in the hyd	drostatic
		URS Corporation		et flow rate of ~30 s ag readings. Injecti	scfh provided	I that the pressur ank #11 was set ystem #2	re reading was r	no greater than the p	pressures pro	vided in the hyd	lrostatic
	tables prepared by	URS Corporation		et flow rate of ~30 s ag readings. Injecti	scfh provided on time at Ba	I that the pressur ank #11 was set ystem #2	re reading was r	o greater than the p	pressures pro	vided in the hyd	drostatic
omments:	tables prepared by Monitoring Poi	URS Corporation	on after collectin	et flow rate of ~30 s ag readings. Injecti	scfh provided on time at Banjection Symmetring	I that the pressur ank #11 was set ystem #2 Points Log	re reading was r at 6 minutes.	no greater than the p	pressures pro	vided in the hyd	drostatic
ID ID	Monitoring Poi	ints Log DO (mg/L)	PID (ppm)	et flow rate of ~30 s ag readings. Injecti O ₂ Ir	iscfh provided on time at Banjection Symptomic DTW	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	re reading was r at 6 minutes.	no greater than the	pressures pro	vided in the hyc	drostatic
ID MP-1-1D	Monitoring Pol DTW 23.76	ints Log DO (mg/L) 5.28	PID (ppm) 0.2	or flow rate of ~30 stage readings. Injection of the control of th	acth provided on time at Banjection Signature Monitoring DTW 23.43	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	PID (ppm)	to greater than the p	pressures pro	vided in the hyd	drostatic
ID MP-1-1S	Monitoring Poi DTW 23.76 23.93	ints Log DO (mg/L) 5.28	PID (ppm) 0.2 0.1	tf flow rate of ~30 s g readings. Injecti O2 In ID MP-1-5	Ajection S Monitoring DTW 23.43	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 22.92 8.34	PID (ppm) 0.0	o greater than the	pressures prov	vided in the hyd	drostatic
ID MP-1-1D MP-1-1S MP-1-2D	Monitoring Poi DTW 23.76 23.93 17.92	ints Log DO (mg/L) 5.28 19.67 37.40	PID (ppm) 0.2 0.1 0.0	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	piction Symptotic DTW 23.43 15.85	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 22.92 8.34 11.82	PID (ppm) 0.0 0.0	no greater than the	pressures pro	vided in the hyd	lrostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S	Monitoring Poi DTW 23.76 23.93 17.92 18.33	ints Log DO (mg/L) 5.28 19.67 37.40 14.68	PID (ppm) 0.2 0.1 0.0	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	piction Symptotic DTW 23.43 15.85	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 22.92 8.34 11.82	PID (ppm) 0.0 0.0	no greater than the p	pressures pro	vided in the hyd	drostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S MP-1-3D	Monitoring Poi DTW 23.76 23.93 17.92 18.33	ints Log DO (mg/L) 5.28 19.67 37.40 14.68 4.92	PID (ppm) 0.2 0.1 0.0 0.0 0.5	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	piction Symptotic DTW 23.43 15.85	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 22.92 8.34 11.82	PID (ppm) 0.0 0.0	to greater than the p	pressures prov	vided in the hyd	drostatic

SYSTEM #1

				Date:	12/23/2011
		TOTAL MOTEON			
C . C		OPERATIONAL NOTES			
GA5 Air C	Compressor 1) Oil Level Cheeked with exetem unleaded*		Vos	v	NT_
	1) Oil Level Checked with system unloaded* * Unload system, weit until Delivery Air Press	source is loss than 0 noi	i es	X	No
	* Unload system, wait until Delivery Air Pres:	sure is less than 9 psi			
	2) Oil Level with system unloaded	Normal (graan)	X Hig	h (orongo)	
	3) Oil added	Normal (green) Yes	AIIIg	h (orange)	X
	4) Oil changed	Yes			X
	5) Oil filter changed	Vos		No_	X
	6) Air filter Changed	Yes Yes		No_	X
	7) Oil separator cleaned			No_	
	8) Terminal strips checked	Yes Yes X		No_	
	o) Terminai surps checked	1 CS		110_	
AS-80 O ₂ 0	Generato <u>r</u>				
	1) Prefilter changed	Yes		No	X
	2) Coalescing changed	Yes		No _	
		GENERAL SYSTEM NOTES			
T:1-m					
<u>Trailer</u>	1) B. 6 1	** ** 1 * *** 4 * *			
	1) Performed general housekeeping (i.e. sweep, o			No	
		Yes X		NO _	
	2) Abnormal conditions observed (e.g. vandalisn	n			
	2) Adiidiliai conditions observed (e.g. vandansii				
	2) Other major activities completed				
	Other major activities completed				
	0.6				
	4) Supplies needed				
	5) Visitors				
Record ro	utine activities such as any alarm/shutdowns, sa	mpling, maintenance, material	l		
transporte	ed off-site, oil/filter/gasket and/or any other abno	ormal operating conditions:			
4 I ID:	Cltttd linittion points OW 1 415 O	W 1 42C 1 OW 1 44 and turn	1 -ff injection	: OW 1	40D OW 1 160 OW 1 170 on
-	S's request restarted injection points OW-1-41S, O'			•	
	Replaced four (4) bolts on manhole that were not s	setting properly. wiped down a	Il equipment and	cleaned up a	Il garbage, weeds & leaves from
around fen	ce areas.				
Elactric Me	eter # 96-934-323 tied into Pole #4				
Elecule ivit	etel # 90-934-323 tied into Fole #4				
Action Ite	ms:				

SYSTEM #1

Ti Wea Outdoor T Inside Traile	Date: 12/9/2011 Time: 1218 Weather: Sunny Outdoor Temperature: ~58°F Inside Trailer Temperature: ~70°F Performed By: Mike Ryan										
O ₂ Generator (AirSep)							Compress	or (Kaesar Rot	ary Screv	v)	
Hours	2,023.2					sor Tank *			100		(psi)
Feed Air Press Cycle Pressure			70 60	(psi)	Delivery Element	,		w are made fror	112 174	oanel)	(psi) (°F)
Oxygen Receiv	ver Pressure *			95 (psi)	Running Loading			2,238 1,505		(hours)	
Oxygen Purity * maximum readin	ng during loading cyc	ele	98.7	(percent)	* maximum	n reading during	loading cycle				
	Injection Ba	nk 1		02 1	Injection				Injection	Bank 3	
				<u> </u>							
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	Depth 95.5	scfh 34	psi 32	ID OW-1-5S	Depth 67.3	sefh 25	psi 18	OW-1-9D	Depth 88.5	scfh OFF	psi OFF
OW-1-1	95.5	34	32	OW-1-5S	67.3	25	18	OW-1-9D	88.5	OFF	OFF
OW-1-1	95.5 96.5	34	32	OW-1-5S OW-1-6S	67.3	25	18	OW-1-9D	88.5 87.2	OFF OFF	OFF OFF
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	34 30 35	32 31 32	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0	25 30 20	18	OW-1-9D OW-1-10D OW-1-11D	88.5 87.2 86.1	OFF OFF	OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	34 30 35 40	32 31 32 31	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	25 30 20 22	18 18 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	OFF OFF OFF	OFF OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9	34 30 35 40 30	32 31 32 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7 66.0	25 30 20 22 22	18 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3 84.7	OFF OFF OFF	OFF OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	34 30 35 40 30 30	32 31 32 31 30 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	25 30 20 22 22 22 25	18 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	88.5 87.2 86.1 85.3 84.7	OFF OFF OFF OFF	OFF OFF OFF OFF

SYSTEM #1

				O ₂ In	jection Sy	ystem #1					
	Injection Ba	ınk 4			Injection	Bank 5			Injection	Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	15	14	OW-1-17D	79.5	OFF	OFF	OW-1-21S	49.3	20	13
OW-1-14S	52.7	18	15	OW-1-18D	78.3	OFF	OFF	OW-1-22S	49.3	20	13
OW-1-15S	52.2	20	14	OW-1-19D	78.9	OFF	OFF	OW-1-23S	48.8	20	13
OW-1-16SR	51.8	20	27	OW-1-20D	79.5	OFF	OFF	OW-1-24S	48.4	35	13
OW-1-17S	50.7	20	24	OW-1-21D	79.5	OFF	OFF	OW-1-25S	48.8	30	14
OW-1-18S	50.2	20	13	OW-1-22D	79.5	OFF	OFF	OW-1-26SR	48.3	34	13
OW-1-19S	49.7	30	15	OW-1-23D	78.7	OFF	OFF	OW-1-27S	48.3	30	14
OW-1-20S	49.3	18	15	OW-1-24D	78.2	OFF	OFF	OW-1-28S	48.3	35	15
				et flow rate of ~30 s ng readings. Injecti				no greater than the p	pressures prov	vided in the hyd	lrostatic
	tables prepared by	URS Corporation		ng readings. Injecti	on times at B	ank #5 were se		no greater than the p	•	·	lrostatic
		URS Corporation		ng readings. Injecti	on times at B	ank #5 were se		no greater than the p	Injection Depth	·	ps
omments:	tables prepared by Injection Ba	URS Corporation	on after collecti	ng readings. Injecti O2 In	on times at B ijection Sy Injection	ystem #1 Bank 8	t at 3 minutes.		Injection	Bank 9	
ID ID	Injection Ba Depth	urs Corporatio	psi	O ₂ In	jection Sy Injection Depth	ystem #1 Bank 8 scfh	t at 3 minutes.	ID	Injection Depth	Bank 9	ps
ID OW-1-25D	Injection Ba Depth 78.1	unk 7 sefh 30	psi 28	O2 In ID OW-1-29S	jection Sy Injection Depth 48.5	sank #5 were se ystem #1 Bank 8 scfh 28	psi	ID OW-1-33D	Injection Depth 83.2	Bank 9 sefh 50	ps 31
ID OW-1-25D OW-1-26D	Injection Ba Depth 78.1	unk 7 scfh 30 50	psi 28	O2 In ID OW-1-29S OW-1-30S	Injection Sy Injection Depth 48.5	sank #5 were se system #1 Bank 8 scfh 28	psi 13	ID OW-1-33D OW-1-34D	Injection Depth 83.2 84.5	Bank 9 scfh 50 40	98 31 32 32 30
ID OW-1-25D OW-1-26D OW-1-27D	Injection Ba Depth 78.1 78.1	Scfh 30 50	psi 28 29 34	O2 In ID OW-1-298 OW-1-308	Injection Sylvanian Sylvan	ank #5 were se system #1 Bank 8 scfh 28 28	psi 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Injection Depth 83.2 84.5 85.0	Bank 9 scfh 50 40	31 32 30 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Ba Depth 78.1 78.1 77.9 78.0	30 50 40 30	psi 28 29 34 28	O ₂ In ID OW-1-298 OW-1-308 OW-1-318 OW-1-328	Jection Sylvanian Injection Depth 48.5 48.8 49.3 49.3	28 228 228	psi 13 13 13 13 13	D OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injection Depth 83.2 84.5 85.0 85.0	Bank 9 scfh 50 40 35	98 31 32
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Ba Depth 78.1 78.1 77.9 78.0	scfh 30 50 40 40 40	psi 28 29 34 28 27	O ₂ In ID OW-1-29S OW-1-31S OW-1-32S OW-1-33S	Depth	28 25 28 20	psi 13 13 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injection Depth 83.2 84.5 85.0 85.0 84.0	Bank 9 scfh 50 40 35 30	31 32 30 30 30 30

SYSTEM #1

								Date	:	12/9/2011	
				O ₂ In	jection S	vstem #1					
	Injection Ba	nk 10		- 2	Injection				Injection	Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	12	OW-1-41D	73.6	OFF	OFF	OW-1-43	67.4	OFF	OFF
OW-1-38S	50.6	30	13	OW-1-42D	71.0	OFF	OFF	OW-1-44	66.6	OFF	OFF
OW-1-39S	50.7	30	13	OW-1-45	65.7	32	20	OW-1-51R	60.6	35	18
OW-1-40S	51.1	25	13	OW-1-46	64.3	35	18	OW-1-52	59.3	45	17
OW-1-41S	51.5	OFF	OFF	OW-1-47	63.4	30	18	OW-1-53	60.0	30	18
OW-1-42S	51.3	OFF	OFF	OW-1-48	62.5	30	18	OW-1-54	60.0	30	17
				OW-1-49	61.5	30	17				
				OW-1-50	61.0	35	18				
				et flow rate of ~30 s ng readings. Injecti	on time at B	ank #11 was set		no greater than the	pressures pro	vided in the hyd	lrostatic
					jection S						
ID	Monitoring Po	DO (mg/L)	PID (ppm)	ID	Monitoring DTW	Points Log DO (mg/L)	PID (ppm)		1		
MP-1-1D	23.75	7.77	0.0	MP-1-5	23.40	27.42	0.4				
WII -1-1D	23.13	7.77	0.0	WI -1-5	23.40	27.42	0.4				
MP-1-1S	23.91	14.21	0.0	MP-1-6	15.76	6.17	0.0				
MP-1-2D	17.88	18.60	0.9	MP-1-7	18.99	0.90	0.0				
MP-1-2S	18.29	16.42	0.0	MP-1-8	20.06	16.84	0.2				
MP-1-3D	15.99	6.71	0.0								
MP-1-3S	16.03	23.12	0.0								
MP-1-4D	18.68	26.14	0.7								
MP-1-4S	18.48	0.78	0.0								
Comments:	DO readings we			ths: MP-1-1S (66 fo						9 feet), MP-1-3	D (79 fee

SYSTEM #1

				Date:	12/9/2011
G L T L L G		OPERATIONAL NOTES			
GA5 Air Com			37	v	N
1	Oil Level Checked with system unloaded*	. 1 . 1 . 0	Yes_	X	No
	* Unload system, wait until Delivery Air Pressure	e is less than 9 psi			
2	Oil Level with system unloaded	N1 ()	v	I:-1- ()	
,	Low (red)	Normal (green)	<u>X</u> I	High (orange)	X
	Oil added	Yes		No_	X
	Oil Changed	Yes		No_ No	
	Oil filter changed	Yes			
	Air filter Changed	Yes		No_	X
	Oil separator cleaned	Yes		No_	X
8	Terminal strips checked	Yes X		No _	
AS-80 O2 Ger	erator				
1	Prefilter changed	Yes		No	X
	Coalescing changed	Yes		No _	X
_					
	GE	NERAL SYSTEM NOTES			
T. '1					
<u>Trailer</u>	D 6 1 11 1 1 1 1				
1	Performed general housekeeping (i.e. sweep, coll			N	
		Yes X		No_	
2	Abnormal conditions observed (e.g. vandalism				
	Abhormal conditions observed (e.g. vandansm				
2	Other major activities completed				
3	Other major activities completed				
1	Supplies needed				
4	Supplies needed				
_	XV:-:4				
3	Visitors				
D		!			
	ne activities such as any alarm/shutdowns, samp	_			
-	ff-site, oil/filter/gasket and/or any other abnorm				
	naft on booster pump sticking, sprayed with WD-40	_	buildup in o	il water seperato	r cannister. Wiped down all
equipment and	I cleaned up all garbage, weeds & leaves from arou	nd fence areas.			
High pressure	noted at MP-1-2D & MP-1-3S.				
riigii piessure	noted at WII -1-2D & WII -1-35.				
Electric Meter	# 96-934-323 tied into Pole #4				
Action Items					

SYSTEM #1

	ate: me:	11/22/2011 1315									
	ather:		ain	-							
	emperature:		2°F	=							
	r Temperature:		2°F	_							
	med By:		Ryan	_							
				_							
O ₂ Generator (AirSep)							Compress	or (Kaesar Rot	ary Screw	y)	
Hours					Compress	sor Tank *			112		(psi)
Feed Air Press	sure *		75	(psi)			eadings belo	w are made fror	-	oanel)	
					Delivery	Air			110		(psi)
Cycle Pressure	*		60	(psi)	Element (Outlet Temp	erature		147		(°F)
Oxygen Recei	ver Pressure *			100	Running				2,107		(hours)
				(psi)	Loading 1	Hours			1,417		(hours)
Oxygen Purity	•		99.9	(percent)							
* maximum readir	ng during loading cyc	le			* maximum	reading during	loading cycle				
				O ₂ I	njection Sy	ystem #1					
					Injection Bank 2 Injection Bank 3						
	Injection Ba	nk 1			Injection	Bank 2			Injection	Bank 3	
ID	Injection Bar Depth	nk 1 scfh	psi	ID	Injection Depth	Bank 2 scfh	psi	ID	Injection Depth	Bank 3 scfh	psi
ID OW-1-1			psi 32	ID OW-1-5S			psi 18	ID OW-1-9D			psi 28
	Depth	scfh	_		Depth	scfh	_		Depth	scfh	
OW-1-1	95.5	scfh 30	32	OW-1-5S	Depth 67.3	scfh 20	18	OW-1-9D	Depth 88.5	scfh 32	28
OW-1-1	95.5 96.5	30 28	32 29	OW-1-5S	67.3 67.0	20 28	18	OW-1-9D OW-1-10D	88.5 87.2	32 38	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 28 30	32 29 32	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	20 28 20	18 19 18	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	32 38 28	28 28 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	scfh 30 28 30 30	32 29 32 31	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	20 28 20 20 20	18 19 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	Depth 88.5 87.2 86.1 85.3	32 38 28 OFF	28 28 30 OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9	scfh 30 28 30 30 30	32 29 32 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7	20 28 20 20 20 20	18 19 18 19 20	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth 88.5 87.2 86.1 85.3 84.7	scfh 32 38 28 OFF OFF	28 28 30 OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	sefh 30 28 30 30 30 30 30	32 29 32 31 30 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	20 28 20 20 20 24	18 19 18 19 20 14	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	32 38 28 OFF OFF OFF	28 28 30 OFF OFF OFF

SYSTEM #1

								Date:		11/22/201	1
				O ₂ Ir	jection S	ystem #1					
	Injection Ba	nnk 4			Injection	Bank 5			Injection	Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	18	14	OW-1-17D	79.5	OFF	OFF	OW-1-21S	49.3	20	12
OW-1-14S	52.7	18	15	OW-1-18D	78.3	OFF	OFF	OW-1-22S	49.3	22	12
OW-1-15S	52.2	20	14	OW-1-19D	78.9	OFF	OFF	OW-1-23S	48.8	20	12
OW-1-16SR	51.8	30	27	OW-1-20D	79.5	OFF	OFF	OW-1-24S	48.4	35	13
OW-1-17S	50.7	25	23	OW-1-21D	79.5	28	27	OW-1-25S	48.8	30	13
OW-1-18S	50.2	30	13	OW-1-22D	79.5	35	27	OW-1-26SR	48.3	30	13
OW-1-19S	49.7	30	12	OW-1-23D	78.7	30	27	OW-1-27S	48.3	28	13
OW-1-20S	49.3	20	13	OW-1-24D	78.2	30	28	OW-1-28S	48.3	30	14
Comments:				et flow rate of ~30 s ng readings. Injecti				no greater than the p	oressures pro	vided in the hyd	lrostatic
				O ₂ Ir	ijection S						
ID	Injection Ba	scfh	:	ID	Injection	scfh	:	ID	Injection		:
	Depth		psi		Depth		psi		Depth	scfh	psi
OW-1-25D	78.1	32	28	OW-1-29S	48.5	27	13	OW-1-33D	83.2	45	30
OW-1-26D	78.1	60	28	OW-1-30S	48.8	27	13	OW-1-34D	84.5	40	31
OW-1-27D	77.9	50	34	OW-1-31S	49.3	25	13	OW-1-35D	85.0	42	30
OW-1-28D	78.0	30	28	OW-1-32S	49.3	20	13	OW-1-36D	85.0	30	30
OW-1-29D	78.4	35	27	OW-1-33S	49.7	22	12	OW-1-37D	84.0	35	30
OW-1-30D	79.0	40	33	OW-1-34S	50.1	28	12	OW-1-38D	82.0	28	34
OW-1-31D	80.5	45	28	OW-1-35S	50.3	40	13	OW-1-39D	78.0	30	28
OW-1-32D	81.6	30	29	OW-1-36S	50.3	21	13	OW-1-40D	76.0	30	28
Comments:	All injection point tables prepared by			et flow rate of ~30 s	scfh provided	I that the pressu	re reading was r	no greater than the p	pressures pro	vided in the hyd	lrostatic

SYSTEM #1

				O ₂ Ir	jection S						
	Injection Ba				Injection				Injection		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	33	12	OW-1-41D	73.6	38	23	OW-1-43	67.4	38	21
OW-1-38S	50.6	10	13	OW-1-42D	71.0	30	22	OW-1-44	66.6	30	19
OW-1-39S	50.7	35	13	OW-1-45	65.7	40	20	OW-1-51R	60.6	30	18
OW-1-40S	51.1	25	13	OW-1-46	64.3	35	18	OW-1-52	59.3	40	17
OW-1-41S	51.5	30	13	OW-1-47	63.4	30	18	OW-1-53	60.0	25	17
OW-1-42S	51.3	30	13	OW-1-48	62.5	35	18	OW-1-54	60.0	25	17
				OW-1-49	61.5	30	17				
mmonte:				OW-1-50 et flow rate of ~30 s ng readings. Injecti	on time at Ba	ank #11 was set		o greater than the p	oressures pro	vided in the hyd	lrostatic
ammonte:		URS Corporation		et flow rate of ~30 s ng readings. Injecti	ocfh provided	I that the pressur ank #11 was set ystem #2	re reading was r	no greater than the p	oressures pro	vided in the hyc	lrostatic
ammonte:	tables prepared by	URS Corporation		et flow rate of ~30 s ng readings. Injecti	or time at Bariection S	I that the pressur ank #11 was set ystem #2	re reading was r	no greater than the p	oressures pro	vided in the hyd	drostatic
omments:	tables prepared by Monitoring Poi	URS Corporatio	on after collecting	et flow rate of ~30 s ng readings. Injecti	acfh provided on time at Banjection Symmetring	that the pressur ank #11 was set ystem #2 Points Log	re reading was r at 6 minutes.	no greater than the p	pressures pro	vided in the hyd	Irostatic
ID II	Monitoring Poi	ints Log DO (mg/L)	PID (ppm)	et flow rate of ~30 s ag readings. Injecti O ₂ Ir	cfh provided on time at Barietion Symptomic DTW	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	re reading was r at 6 minutes.	no greater than the p	pressures pro	vided in the hyd	lrostatic
ID MP-1-1D	Monitoring Poi DTW 23.85	ints Log DO (mg/L) 6.25	PID (ppm) 0.0	or flow rate of ~30 s ag readings. Injection O2 In ID MP-1-5	confirment Background	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	PID (ppm)	no greater than the p	pressures pro	vided in the hyc	Irostatic
ID MP-1-1S	Monitoring Poi DTW 23.85 24.00	ints Log DO (mg/L) 6.25 8.41	PID (ppm) 0.0 0.0	et flow rate of ~30 s ng readings. Injecti O2 In ID MP-1-5	Lipection Signature at Base Monitoring DTW 23.50	I that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 17.25	PID (ppm) 0.0	no greater than the p	pressures pro	vided in the hyc	Irostatic
ID MP-1-1D MP-1-1S MP-1-2D	Monitoring Poi DTW 23.85 24.00 18.02	ints Log DO (mg/L) 6.25 8.41 17.19	PID (ppm) 0.0 0.0 0.0	ot flow rate of ~30 s gg readings. Injecti O2 III IID MP-1-5 MP-1-6	coff provided on time at Basic Section	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 17.25 7.29 3.30	PID (ppm) 0.0 0.0	no greater than the p	pressures pro	vided in the hyd	drostatic
ID MP-1-1D MP-1-1S MP-1-2D MP-1-2S	Monitoring Poi DTW 23.85 24.00 18.02	ints Log DO (mg/L) 6.25 8.41 17.19 12.16	PID (ppm) 0.0 0.0 0.0 0.0	ot flow rate of ~30 s gg readings. Injecti O2 III IID MP-1-5 MP-1-6	coff provided on time at Basic Section Symmetry DTW 23.50 15.94	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 17.25 7.29 3.30	PID (ppm) 0.0 0.0	no greater than the p	pressures pro	vided in the hyc	Irostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S MP-1-3D	Monitoring Poi DTW 23.85 24.00 18.02 18.42 16.17	ints Log DO (mg/L) 6.25 8.41 17.19 12.16 6.20	PID (ppm) 0.0 0.0 0.0 0.0 0.0	ot flow rate of ~30 s gg readings. Injecti O2 III IID MP-1-5 MP-1-6	coff provided on time at Basic Section Symmetry DTW 23.50 15.94	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 17.25 7.29 3.30	PID (ppm) 0.0 0.0	no greater than the p	pressures pro	vided in the hyc	Irostatic

SYSTEM #1

		Date	: 11/22/2011
	OPERATIONAL NOTES		
GA5 Air Compressor	OI ERATIONAL NOTES		
1) Oil Level Checked with system unloaded*		Yes X	No
* Unload system, wait until Delivery Air Press	sure is less than 9 psi		
Oil Level with system unloaded	•		
Low (red)	Normal (green)	X High (orange)	,
3) Oil added	Yes		o X
4) Oil changed	Yes		o X
5) Oil filter changed	Yes		o <u>X</u>
6) Air filter Changed	1 68		o <u>X</u>
7) Oil separator cleaned	Yes	N	o <u>X</u>
8) Terminal strips checked	Yes X	N	0
AS-80 O ₂ Generator			
Prefilter changed	Yes	N	o X
2) Coalescing changed	Yes	N	0 <u>X</u>
	GENERAL SYSTEM NOTES	S	
<u>Trailer</u>			ļ
1) Performed general housekeeping (i.e. sweep, o			
	Yes X	N	
2) Abnormal conditions observed (a.g. yandalism			ļ
Abnormal conditions observed (e.g. vandalisn			
Other major activities completed			
4) Supplies needed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdowns, sa	mpling, maintenance, materia	ıl	
transported off-site, oil/filter/gasket and/or any other abno	ormal operating conditions:		
Tightened belts on booster pump. Cleaned up oil buildup in o	il water seperator cannister. W	iped down all equipment a	nd cleaned up all garbage, weeds &
leaves from around fence areas.	-		
Electric Meter # 96-934-323 tied into Pole #4			
Action Items:			

SYSTEM #1

Ti Wea Outdoor To Inside Trailer	ate: me: ather: emperature: r Temperature: med By:	12 Su ~7 ~7	0/2011 233 nnny 4°F 2°F	ny PF Ryan							
	O ₂ Gen	erator (Air	Sep)				Compress	or (Kaesar Rot	ary Screv	v)	
Hours			1,815.5	-	Compres	sor Tank *			110	-	(psi)
Feed Air Press Cycle Pressure			60	(psi) (psi)	Delivery Element	`		w are made fror	109 154	panel) - -	(psi) (°F)
Oxygen Receiv	ver Pressure *			110 (psi)	Running Loading				2,005 1,351	-	(hours)
Oxygen Purity * maximum readin	g during loading cyc	cle	98.5	(percent)		n reading during	loading cycle				
	Tota di con	.1.1		O ₂ Iı	njection S				Totalda	D. 1.2	
TD.	Injection Ba	nk 1			Injection				Injection	Dank 3	
11)	Denth	sefh	nsi	ID ID	Depth	sefh	nsi	ID	Denth	scfh	nsi
OW-1-1	Depth 95.5	scfh 35	psi 32	OW-1-5S	Depth 67.3	scfh 22	psi 18	OW-1-9D	Depth 88.5	scfh 30	psi 28
			_				_				
OW-1-1	95.5	35	32	OW-1-5S	67.3	22	18	OW-1-9D	88.5	30	28
OW-1-1	95.5 96.5	35 27	32	OW-1-5S	67.3 67.0	22 28	18	OW-1-9D OW-1-10D	88.5 87.2	30	28
OW-1-1 OW-1-2	95.5 96.5 96.3	35 27 30	32 31 32	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	22 28 22	18	OW-1-9D OW-1-10D OW-1-11D	88.5 87.2 86.1	30 35 28	28 28 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	35 27 30 32	32 31 32 31	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	22 28 22 20	18 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	30 35 28 OFF	28 28 30 OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9	35 27 30 32 30	32 31 32 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7 66.0	22 28 22 20 20	18 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3 84.7	30 35 28 OFF OFF	28 28 30 OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	35 27 30 32 30 30	32 31 32 31 30 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	22 28 22 20 20 20	18 18 18 18 19 15	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	88.5 87.2 86.1 85.3 84.7	30 35 28 OFF OFF	28 28 30 OFF OFF OFF

SYSTEM #1

Injection Depth 49.3	on Bank 6									
Depth	on Bank 6									
49.3	scfh	psi								
	24	12								
49.3	25	12								
48.8	20	12								
48.4	30	13								
48.8	30	13								
48.3	28	14								
48.3	28	14								
48.3	25	15								
	on Bank 9	T noi								
Depth	scfh	psi								
83.2	40	31								
84.5	30	33								
85.0	25	30								
85.0	28	30								
84.0	28	30								
82.0	40	31								
	30	28								
78.0		29								
)	82.0 78.0	82.0 40								

SYSTEM #1

ID Dep OW-1-37S 50. OW-1-38S 50. OW-1-39S 50. OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	5 28 6 24 7 35 1 20 5 40	12 13 13 13 13 13	O ₂ In ID OW-1-41D OW-1-42D OW-1-45 OW-1-46 OW-1-47 OW-1-48 OW-1-49	73.6 71.0 65.7 64.3 63.4 62.5		24 22 20 18 18	OW-1-43 OW-1-44 OW-1-51R OW-1-52 OW-1-53	Injection Depth 67.4 66.6 60.6 59.3	24 20 20 35 20	18 17
ID Dep OW-1-37S 50. OW-1-38S 50. OW-1-39S 50. OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	th scfh 5 28 6 24 7 35 1 20 5 40	12 13 13 13	OW-1-41D OW-1-42D OW-1-45 OW-1-46 OW-1-47 OW-1-48	Injection Depth 73.6 71.0 65.7 64.3 63.4 62.5	25 25 25 30 20	24 22 20 18	OW-1-43 OW-1-44 OW-1-51R OW-1-52 OW-1-53	Depth 67.4 66.6 60.6 59.3	24 20 20 35	21 19 18 17
OW-1-37S 50. OW-1-38S 50. OW-1-39S 50. OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	5 28 6 24 7 35 1 20 5 40	12 13 13 13	OW-1-41D OW-1-42D OW-1-45 OW-1-46 OW-1-47 OW-1-48	73.6 71.0 65.7 64.3 63.4 62.5	25 25 25 30 20	24 22 20 18	OW-1-43 OW-1-44 OW-1-51R OW-1-52 OW-1-53	67.4 66.6 60.6 59.3	24 20 20 35	21 19 18 17
OW-1-38S 50. OW-1-39S 50. OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	6 24 7 35 1 20 5 40	13 13 13	OW-1-42D OW-1-45 OW-1-46 OW-1-47 OW-1-48	71.0 65.7 64.3 63.4 62.5	25 25 30 20	22 20 18	OW-1-44 OW-1-51R OW-1-52 OW-1-53	66.6	20 20 35	19 18 17
OW-1-39S 50. OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	7 35 1 20 5 40	13	OW-1-45 OW-1-46 OW-1-47 OW-1-48	65.7 64.3 63.4 62.5	25 30 20	20	OW-1-51R OW-1-52 OW-1-53	60.6	20	18
OW-1-40S 51. OW-1-41S 51. OW-1-42S 51.	1 20 5 40	13	OW-1-46 OW-1-47	64.3 63.4 62.5	30	18	OW-1-52 OW-1-53	59.3	35	17
OW-1-41S 51. OW-1-42S 51.	5 40	13	OW-1-47	63.4	20	18	OW-1-53			
OW-1-42S 51.			OW-1-48	62.5				60.0	20	18
All injecti	3 25	13			20	18	OW-1-54			t
			OW-1-49	61.5		L		60.0	15	17
					30	18				
			OW-1-50	61.0	40	17				
	on point flows were a pared by URS Corpor		ng readings. Inject		ank #11 was set		no greater than the p	pressures prov	vided in the hyd	rostatic
Monito	oring Points Log			Monitoring						
ID DT	W DO (mg/l	PID (ppm)	ID	DTW	DO (mg/L)	PID (ppm)				
MP-1-1D 23.0	6.79	0.0	MP-1-5	23.33	10.25	0.0				
MP-1-1S 23.5	8.20	0.0	MP-1-6	15.72	8.82	0.0				
MP-1-2D 17.5	43.14	0.0	MP-1-7	18.99	2.18	0.0				
MP-1-2S 18.3	21 19.43	0.0	MP-1-8	20.06	8.88	0.9				
MP-1-3D 15.9	7.59	0.0								
MP-1-3S 15.9	98 23.45	0.0								
										1
MP-1-4D 18.0	58 3.60	0.0								

SYSTEM #1

		Date:	11/10/2011
	ODED ATIONAL NOTES		
CASA: C	OPERATIONAL NOTES		
GA5 Air Compressor		V V	N
1) Oil Level Checked with system unloaded*		Yes X	No
* Unload system, wait until Delivery Air P	ressure is less than 9 psi		
2) Oil Level with system unloaded	N 1/	TT: 1 (
Low (red)	Normal (green)	High (orange)	V.
3) Oil added	Yes	No	
4) Oil changed	Yes Yes	No	X
5) Oil filter changed	Yes	No	
6) Air filter Changed	103	No	
7) Oil separator cleaned	Yes Yes	No	X
8) Terminal strips checked	Yes	No	X
AS-80 O ₂ Generator			
1) Prefilter changed	Ves	No	x
2) Coalescing changed	Yes Yes	No	Y
2) Coalescing changed	165	110	A
	GENERAL SYSTEM NOTES		
Performed general housekeeping (i.e. swee Abnormal conditions observed (e.g. vandal Other major activities completed Supplies needed Visitors	Yes <u>X</u>	No	
Record routine activities such as any alarm/shutdowns, transported off-site, oil/filter/gasket and/or any other al	bnormal operating conditions:		
Shut down AC unit and set heat on a low setting. Wiped d Electric Meter # 96-934-323 tied into Pole #4	own all equipment and cleaned up a	ıll garbage, weeds & leaves fro	om around fence areas.
Electric Microi # 70-734-323 fied fillo Pole #4			
Action Items:			

SYSTEM #1

Ti Wea Outdoor T Inside Traile	Date: 10/2//2011 Time: 1240 Weather: Rain tdoor Temperature: ~61°F Trailer Temperature: ~70°F Performed By: Mike Ryan										
	O ₂ Gen	erator (Air	Sep)				Compress	or (Kaesar Rot	ary Screv	v)	
Hours			1,707.8	=	Compres	sor Tank *			110	•	(psi)
Feed Air Press Cycle Pressure	essure *					(ro Air Outlet Temp		w are made fror	106 102	oanel)	(psi) (°F)
Oxygen Receiv	ver Pressure *			(psi)	Running Hours Loading Hours						(hours)
Oxygen Purity * maximum readin	ng during loading cyc	:le	98.5	(percent)		n reading during	loading cycle				
	Injection Ba	-1- 1		O ₂ In	njection Sy Injection			1	Injection	Donle 2	
	пијесноп ва	IIK I			mjecuor	I Dalik 2			mjection	Dank 3	
ID	Denth		nei	ID	Denth	sefh	nei	ID	Denth	sefh	nsi
ID OW-1-1	Depth 95.5	scfh 34	psi 32	ID OW-1-5S	Depth 67.3	scfh 25	psi 18	OW-1-9D	Depth 88.5	sefh 30	psi 28
		scfh									
OW-1-1	95.5	scfh 34	32	OW-1-5S	67.3	25	18	OW-1-9D	88.5	30	28
OW-1-1	95.5 96.5	34 35	32 27	OW-1-5S	67.3 67.0	25	18	OW-1-9D	88.5 87.2	30	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	34 35 35	32 27 31	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	25 30 25	18	OW-1-9D OW-1-10D OW-1-11D	88.5 87.2 86.1	30 35 30	28 29 28
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	scfh 34 35 35 38	32 27 31 31	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	25 30 25 25	18 18 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	30 35 30 OFF	28 29 28 OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9	scfh 34 35 35 38 30	32 27 31 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7 66.0	25 30 25 25 25	18 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3 84.7	30 35 30 OFF OFF	28 29 28 OFF OFF
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	sefh 34 35 35 38 30 35	32 27 31 31 30 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	25 30 25 25 25 25 30	18 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	88.5 87.2 86.1 85.3 84.7	30 35 30 OFF OFF	28 29 28 OFF OFF OFF

SYSTEM #1

				O ₂ In	jection Sy	vstem #1					
	Injection Ba	ank 4		1	Injection				Injection	Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	20	13	OW-1-17D	79.5	OFF	OFF	OW-1-21S	49.3	30	12
OW-1-14S	52.7	18	14	OW-1-18D	78.3	OFF	OFF	OW-1-22S	49.3	35	11
OW-1-15S	52.2	28	13	OW-1-19D	78.9	OFF	OFF	OW-1-23S	48.8	25	12
OW-1-16SR	51.8	25	27	OW-1-20D	79.5	OFF	OFF	OW-1-24S	48.4	35	12
OW-1-17S	50.7	35	23	OW-1-21D	79.5	30	27	OW-1-25S	48.8	30	13
OW-1-18S	50.2	22	13	OW-1-22D	79.5	33	27	OW-1-26SR	48.3	30	13
OW-1-19S	49.7	32	13	OW-1-23D	78.7	35	27	OW-1-27S	48.3	30	13
OW-1-20S	40.2	1.5	13	OW-1-24D	78.2	30	28	OW-1-28S	48.3	30	14
omments:			sted to the targ	get flow rate of ~30 sing readings. Injecti	cfh provided	that the pressu	re reading was				
omments:	All injection point ables prepared by	flows were adju URS Corporation	sted to the targ	get flow rate of ~30 sing readings. Injecti	offh provided on times at B	that the pressu ank #5 were se	re reading was		oressures prov	vided in the hyd	
omments:	All injection point tables prepared by Injection Ba	flows were adju URS Corporation	isted to the targ	get flow rate of ~30 sing readings. Injecti	acfh provided on times at B	that the pressu ank #5 were se ystem #1 Bank 8	re reading was at at 3 minutes.	no greater than the p	Injection	rided in the hyd	lrostatic
omments:	All injection point ables prepared by	flows were adju URS Corporation	sted to the targ	get flow rate of ~30 sing readings. Injecti	offh provided on times at B	that the pressu ank #5 were se	re reading was		oressures prov	vided in the hyd	ps
omments:	All injection point tables prepared by Injection Ba	flows were adju URS Corporation ank 7 scfh	psi	et flow rate of ~30 sing readings. Injecti	cfh provided on times at B ijection Sy Injection Depth	that the pressu ank #5 were so vstem #1 Bank 8 scfh	psi	no greater than the p	Injection Depth	Bank 9	ps 30
ID OW-1-25D	All injection point tables prepared by Injection Ba Depth 78.1	flows were adju URS Corporatio ank 7 scfh 28	psi 27	et flow rate of ~30 s ing readings. Injecti O2 In ID OW-1-29S	cfh provided on times at B spectron Sy Injection Depth 48.5	that the pressu ank #5 were so ystem #1 Bank 8 scfh	re reading was it at 3 minutes.	ID OW-1-33D	Injection Depth 83.2	Bank 9 scfh 35	ps 30
ID OW-1-25D OW-1-26D	All injection point tables prepared by Injection Ba Depth 78.1	flows were adju URS Corporatio ank 7 scfh 28 65	psi 27 32	tet flow rate of ~30 s ing readings. Injecti O2 In ID OW-1-29S OW-1-30S	Lipection Sy Injection Depth 48.5	that the pressu ank #5 were se /stem #1 Bank 8 scfh 30	psi 13	ID OW-1-33D OW-1-34D	Injection Depth 83.2 84.5	Bank 9 sefh 35	
ID OW-1-25D OW-1-26D OW-1-27D	All injection point tables prepared by Injection Ba Depth 78.1 78.1	flows were adju URS Corporatio ank 7 scfh 28 65 40	psi 27 32 31	Use the flow rate of ~30 s ing readings. Injectic O2 Interpretation of which is the control of t	Lipection Sy Injection Depth 48.5	that the pressu ank #5 were so vstem #1 Bank 8 scfh 30 30	psi 13 13	ID OW-1-33D OW-1-35D	Injection Depth 83.2 84.5	Bank 9 scfh 35 30	
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-28D	All injection point tables prepared by Injection Ba Depth 78.1 77.9 78.0	flows were adju URS Corporatio ank 7 scfh 28 65 40 20	psi 27 32 31 28	tet flow rate of ~30 s ing readings. Injecti O2 In ID OW-1-298 OW-1-318 OW-1-32S	ccfh provided on times at B spectron Sy Injection Depth 48.5 48.8 49.3	that the pressu ank #5 were se //stem #1 Bank 8 scfh 30 25	psi 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injection Depth 83.2 84.5 85.0 85.0	Bank 9 scfh 35 30 50	ps 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	All injection point tables prepared by Injection Ba Depth 78.1 78.1 77.9 78.0 78.4	flows were adju URS Corporatio ank 7 scfh 28 65 40 20 35	psi 27 32 31 28	tet flow rate of ~30 s ing readings. Injecti O2 In ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	Lipection Sy Injection Depth 48.5 48.8 49.3 49.3	that the pressu ank #5 were se //stem #1 Bank 8 scfh 30 30 25 35	psi 13 13 13 13 13	D OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injection Depth 83.2 84.5 85.0 85.0 84.0	35 30 50 30	98 30 3 3 2 2 3 3 6 2 9

SYSTEM #1

				O ₂ Ir	jection S						
	Injection Ba	nk 10			Injection	Bank 11			Injection	Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	25	12	OW-1-41D	73.6	25	24	OW-1-43	67.4	25	20
OW-1-38S	50.6	30	13	OW-1-42D	71.0	30	22	OW-1-44	66.6	22	18
OW-1-39S	50.7	30	13	OW-1-45	65.7	30	20	OW-1-51R	60.6	20	18
OW-1-40S	51.1	25	13	OW-1-46	64.3	30	19	OW-1-52	59.3	30	17
OW-1-41S	51.5	40	14	OW-1-47	63.4	25	18	OW-1-53	60.0	35	17
OW-1-42S	51.3	35	13	OW-1-48	62.5	20	18	OW-1-54	60.0	20	17
				OW-1-49	61.5	30	17				
	All injection point tables prepared by			ig readings. Injecti	on time at Ba	ank #11 was set		no greater than the p	oressures pro	vided in the hyd	lrostatic
		URS Corporation		et flow rate of ~30 s ag readings. Injecti	ocfh provided	I that the pressur ank #11 was set ystem #2	re reading was r	no greater than the p	oressures pro	vided in the hyd	lrostatic
	tables prepared by	URS Corporation		et flow rate of ~30 s ag readings. Injecti	or time at Bariection S	I that the pressur ank #11 was set ystem #2	re reading was r	no greater than the p	pressures pro	vided in the hyd	drostatic
omments:	tables prepared by Monitoring Po	URS Corporation	on after collecting	et flow rate of ~30 s ag readings. Injecti	acfh provided on time at Banjection Symmetring	that the pressur ank #11 was set ystem #2 Points Log	re reading was r at 6 minutes.	no greater than the p	pressures pro	vided in the hyd	Irostatic
ID ID	Monitoring Po	ints Log DO (mg/L)	PID (ppm)	et flow rate of ~30 s ag readings. Injecti O ₂ Ir	cfh provided on time at Barietion Symptomic DTW	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	re reading was r at 6 minutes.	no greater than the p	pressures pro	vided in the hyd	drostatic
ID MP-1-1D	Monitoring Po DTW 23.78	ints Log DO (mg/L) 6.94	PID (ppm) 0.9	or flow rate of ~30 stage readings. Injection of the control of th	confirment Background	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L)	PID (ppm)	no greater than the	pressures pro	vided in the hyc	Irostatic
ID MP-1-1D MP-1-1S	Monitoring Po DTW 23.78 23.93	ints Log DO (mg/L) 6.94	PID (ppm) 0.9 0.0	tf flow rate of ~30 s g readings. Injecti O2 In ID MP-1-5	Lipection S Monitoring DTW 23.42	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 10.51	PID (ppm) 0.0	no greater than the	pressures pro	vided in the hyc	Irostatic
ID MP-1-1D MP-1-1S MP-1-2D	Monitoring Po DTW 23.78 23.93 17.93	ints Log DO (mg/L) 6.94 6.69 12.83	PID (ppm) 0.9 0.0 0.0	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	coff provided on time at Basic Section	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 10.51 5.49 1.85	PID (ppm) 0.0 0.2	no greater than the p	pressures pro	vided in the hyd	drostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S	Monitoring Pol DTW 23.78 23.93 17.93 18.35	ints Log DO (mg/L) 6.94 6.69 12.83	PID (ppm) 0.9 0.0 0.0 0.8	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	coff provided on time at Basic Section	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 10.51 5.49 1.85	PID (ppm) 0.0 0.2	no greater than the p	pressures pro	vided in the hyc	Irostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S MP-1-3D	Monitoring Pol DTW 23.78 23.93 17.93 18.35	ints Log DO (mg/L) 6.94 6.69 12.83 11.67 7.56	PID (ppm) 0.9 0.0 0.0 0.8 0.3	tf flow rate of ~30 s g readings. Injecti O2 Ir ID MP-1-5 MP-1-6	coff provided on time at Basic Section	that the pressur ank #11 was set ystem #2 Points Log DO (mg/L) 10.51 5.49 1.85	PID (ppm) 0.0 0.2	no greater than the	pressures pro	vided in the hyc	Irostatic

SYSTEM #1

			Date:	10/27/2011
		OPED ATTOMAT MOTEC		
Q454: Q		OPERATIONAL NOTES		
GA5 Air Compressor 1) Oil Level Checked	with austam unloaded*		Vos Y	Ma
	with system unloaded." ait until Delivery Air Pressur	ra is lass than 0 nsi	Yes X	No
2) Oil Level with system		ie is iess man y psi		
2) On Level with syste	Low (red)	Normal (green)	X High (orange)	
3) Oil added	LOW (ICG)	Yes	No	Y
4) Oil changed		Yes	No.	$\frac{A}{X}$
5) Oil filter changed		Yes X	No.	
6) Air filter Changed		Yes X	No.	X X
7) Oil separator cleane	ed.	Yes X	No No	
8) Terminal strips chec		Yes X	No _	
AS-80 O ₂ Generator				1
1) Prefilter changed		Vac Y	No	
2) Coalescing changed	İ	Yes X Yes X	No.	<u></u>
2) Coalescing changed	·	Yes A		
	GI	ENERAL SYSTEM NOTE	S	
Trailer				
	rousakaaning (i.e. sween, col	llect trash inside and out, etc.	`	
1) Ferrormed general i	lousekeeping (i.e. sweep, cor	Yes X	.) No	
		1 ts	110	
Abnormal condition	as observed (e.g. vandalism			
2 / 1	15 October 1 Car (c.g. 1			
3) Other major activities	es completed			
		_		
4) Supplies needed				
5) Visitors				
3) VISIOIS				
Record routine activities such as	any alarm/shutdowns, samj	pling, maintenance, materia	al	
transported off-site, oil/filter/gask	et and/or any other abnorr	mal operating conditions:		
Performed 6-month O&M between	10-27-11 and 10-28-11.			
Repaired air leaks at two flow mete				
drain line. Changed out all filters, s			t. Wiped down all equipment,	washed floor of shed and
cleaned up all garbage, weeds, leave	es & tree branches from arou	and fence areas.		
A pressure switch low alarm in the	ovugen tank occured on Satu	urday Oother 29, 2011 at ann	provimately 1 A.M. The system	salf corrects once pressure
builds up in the tank. The alarm co				
on Monday, October 31, 2011 and f			ruay arternoon at approximater	y 11 Wi. We inspected the system
Electric Meter # 96-934-323 tied in	to Dole #4			
	10 Poie #4			
Action Items:				

SYSTEM #1

Wea Outdoor To Inside Trailer	Date: 10/14/2011										
	O ₂ Gen	erator (Air	Sep)				Compress	or (Kaesar Rot	ary Screv	v)	
Hours			1,610.5	=	Compres	sor Tank *			105		(psi)
Feed Air Pressi Cycle Pressure		105	(psi) (psi)	Delivery Element	Air	C	w are made fror	n control p 104 109	panel)	(psi) (°F)	
Oxygen Receiv		, , ,							1,774 1,203		(hours) (hours)
Oxygen Purity	g during loading cyc	·la	97.9	(percent)	* mavimum	n reading during	r loading cycle				
maximum reading	g during roading eye			O ₂ I	njection S		, loading cycle				
	Injection Ba	nk 1			Injection	n Bank 2			Injection	Bank 3	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	34	32	OW-1-5S	67.3	25	18	OW-1-9D	88.5	28	28
OW-1-2	96.5	34	28	OW-1-6S	67.0	28	18	OW-1-10D	87.2	34	29
OW-1-3	96.3	32	32	OW-1-7S	66.9	25	18	OW-1-11D	86.1	30	28
OW-1-4	95.0	35	31	OW-1-8S	66.7	24	18	OW-1-12D	85.3	OFF	OFF
OW-1-5D	93.9	30	30	OW-1-9S	66.0	25	19	OW-1-13D	84.7	OFF	OFF
OW-1-6D	92.4	30	30	OW-1-10S	54.6	30	13	OW-1-14D	84.1	OFF	OFF
OW-1-7D	91.1	34	30	OW-1-11S	54.1	20	14	OW-1-15D	83.3	OFF	OFF
OW-1-8D	89.6	40	30	OW-1-12S	53.6	20	15	OW-1-16D	82.5	OFF	OFF
Comments:	All injection point f tables prepared by U								pressures pro	vided in the hy	drostatic

SYSTEM #1

				O ₂ In	jection Sy	ystem #1					
	Injection Ba	ınk 4			Injection	Bank 5			Injection	Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	20	14	OW-1-17D	79.5	OFF	OFF	OW-1-21S	49.3	16	12
OW-1-14S	52.7	23	16	OW-1-18D	78.3	OFF	OFF	OW-1-22S	49.3	25	12
OW-1-15S	52.2	26	13	OW-1-19D	78.9	OFF	OFF	OW-1-23S	48.8	25	12
OW-1-16SR	51.8	25	27	OW-1-20D	79.5	OFF	OFF	OW-1-24S	48.4	30	13
OW-1-17S	50.7	35	21	OW-1-21D	79.5	30	27	OW-1-25S	48.8	30	13
OW-1-18S	50.2	18	13	OW-1-22D	79.5	30	27	OW-1-26SR	48.3	27	13
OW-1-19S	49.7	30	12	OW-1-23D	78.7	32	27	OW-1-27S	48.3	32	13
OW-1-20S	49.3	20	13	OW-1-24D	78.2	31	28	OW-1-28S	48.3	25	14
				et flow rate of ~30 s				no greater than the p	pressures prov	vided in the hyd	lrostatic
	tables prepared by	URS Corporation		ng readings. Injection	on times at B	ank #5 were se		no greater than the p			lrostatic
		URS Corporation		ng readings. Injection	on times at B	ank #5 were se		no greater than the p	Injection Depth		drostatic
omments:	tables prepared by Injection Ba	URS Corporation	on after collecti	ng readings. Injection O ₂ In	on times at B	ystem #1 Bank 8	t at 3 minutes.		Injection	Bank 9	
ID ID	Injection Ba Depth	urk 7	psi	O ₂ In	jection Sy Injection Depth	sank #5 were se ystem #1 Bank 8 scfh	t at 3 minutes.	ID	Injection Depth	Bank 9	psi 29
ID OW-1-25D	Injection Ba Depth 78.1	unk 7 sefh 30	psi 27	O2 In ID OW-1-29S	ijection Sy Injection Depth 48.5	sank #5 were se ystem #1 Bank 8 scfh 28	psi 13	ID OW-1-33D	Injection Depth 83.2	Bank 9 sefh 30	29 31
ID OW-1-25D OW-1-26D	Injection Ba Depth 78.1	unk 7 sefh 30	psi 27 35	O2 In ID OW-1-29S OW-1-30S	Injection Sy Injection Depth 48.5	sank #5 were se system #1 Bank 8 scfh 28	psi 13	ID OW-1-33D OW-1-34D	Injection Depth 83.2 84.5	Bank 9 scfh 30 30	99 31 28
OW-1-25D OW-1-26D OW-1-27D	Injection Ba Depth 78.1 78.1	unk 7 scfh 30 50 45	psi 27 35 33	O2 In ID OW-1-298 OW-1-31S	Jection Sylvantimes at Bulletion Sylvantimes at Sylvantimes at Bulletion Sylvantimes at Sylvantimes a	ank #5 were se ystem #1 Bank 8 seft 28 30	psi 13 13 13	0W-1-33D OW-1-34D OW-1-35D	Injection Depth 83.2 84.5 85.0	Bank 9 scfh 30 30 45	29 31 28
OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Ba Depth 78.1 78.1 77.9 78.0	30 50 45 22	psi 27 35 33 28	O ₂ In ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	Injection Sylvanian August 1985 Injection Sylvanian August 1985 Injection Depth 48.5 48.8 49.3 49.3	ank #5 were se	psi 13 13 12	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injection Depth 83.2 84.5 85.0 85.0	Bank 9 scfh 30 30 45	931 28 30 29
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	### Tables prepared by Injection Ba Depth ### 78.1 ### 77.9 ### 78.0 ### 78.4 ### 78.5	unk 7 scfh 30 50 45 22 30	psi 27 35 33 28 28	O ₂ In ID OW-1-29S OW-1-31S OW-1-32S OW-1-33S	Injection Sylvanian Injection Sylvanian Injection Depth 48.5 48.8 49.3 49.3 49.7	ank #5 were se system #1 Bank 8 scfh 28 30 30 35	psi 13 13 12 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injection Depth 83.2 84.5 85.0 85.0 84.0	Bank 9 scfh 30 30 45 30 30	psi

SYSTEM #1

				O ₂ Ir	ijection S						
	Injection Ba	ınk 10			Injection	Bank 11			Injection	Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	ps
OW-1-37S	50.5	25	13	OW-1-41D	73.6	28	24	OW-1-43	67.4	25	2
OW-1-38S	50.6	23	13	OW-1-42D	71.0	27	22	OW-1-44	66.6	30	1
OW-1-39S	50.7	38	13	OW-1-45	65.7	30	20	OW-1-51R	60.6	30	1
OW-1-40S	51.1	30	14	OW-1-46	64.3	25	18	OW-1-52	59.3	34	1'
OW-1-41S	51.5	30	15	OW-1-47	63.4	27	18	OW-1-53	60.0	15	1
OW-1-42S	51.3	30	13	OW-1-48	62.5	21	18	OW-1-54	60.0	20	1
				OW-1-49	61.5	20	18				
				OW-1-50	61.0	27	17				
				et flow rate of ~30 s	on time at B	ank #11 was set		o greater than the p	pressures pro	vided in the hy	drostatic
		URS Corporation		og readings. Injecti		ank #11 was set		o greater than the p	pressures pro	vided in the hyd	drostatic
	tables prepared by	URS Corporation		og readings. Injecti	on time at B	ank #11 was set		o greater than the p	pressures pro	vided in the hyd	drostatic
omments:	tables prepared by Monitoring Po	URS Corporatio	on after collectin	g readings. Injecti O ₂ In	on time at B	ystem #2 Points Log	at 6 minutes.	oo greater than the p	pressures pro	vided in the hyd	drostatic
ID ID	Monitoring Po DTW	oints Log DO (mg/L)	PID (ppm)	O ₂ In	njection S Monitoring DTW	ystem #2 Points Log DO (mg/L)	at 6 minutes. PID (ppm)	o greater than the p	pressures pro	vided in the hydractic	drostatic
ID MP-1-1D	Monitoring Po DTW 23.63	oints Log DO (mg/L) 9.17	PID (ppm) 0.9	O ₂ In ID MP-1-5	njection S Monitoring DTW 23.26	ystem #2 Points Log DO (mg/L) 14.15	PID (ppm) 0.0	to greater than the p	pressures pro	vided in the hydractic	drostatic
ID MP-1-1D MP-1-1S	Monitoring Po DTW 23.63 23.83	pints Log DO (mg/L) 9.17 16.09	PID (ppm) 0.9 0.0	O2 In ID MP-1-5 MP-1-6	mjection S Monitoring DTW 23.26	ystem #2 Points Log DO (mg/L) 14.15 5.53	PID (ppm) 0.0 0.0	o greater than the p	pressures pro	vided in the hydrac	drostatic
ID MP-1-1D MP-1-1S MP-1-2D	Monitoring Po DTW 23.63 23.83 17.79	9.17 16.09 44.15	PID (ppm) 0.9 0.0 0.0	D2 In ID MP-1-5 MP-1-6 MP-1-7	mjection S Monitoring DTW 23.26 15.70 19.99	wstem #2 Points Log DO (mg/L) 14.15 5.53 7.20	PID (ppm) 0.0 0.0 0.0	o greater than the	pressures pro	vided in the hydrogen	drostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S	Monitoring Po DTW 23.63 23.83 17.79 19.21	9.17 16.09 44.15	PID (ppm) 0.9 0.0 0.0 0.0	D2 In ID MP-1-5 MP-1-6 MP-1-7	mjection S Monitoring DTW 23.26 15.70 19.99	wstem #2 Points Log DO (mg/L) 14.15 5.53 7.20	PID (ppm) 0.0 0.0 0.0	o greater than the p	pressures pro	vided in the hydrogen	drostatic
MP-1-1D MP-1-1S MP-1-2D MP-1-2S MP-1-3D	Monitoring Po DTW 23.63 23.83 17.79 19.21 15.92	9.17 16.09 44.15 16.76	PID (ppm) 0.9 0.0 0.0 0.0 0.0	D2 In ID MP-1-5 MP-1-6 MP-1-7	mjection S Monitoring DTW 23.26 15.70 19.99	wstem #2 Points Log DO (mg/L) 14.15 5.53 7.20	PID (ppm) 0.0 0.0 0.0	o greater than the p	pressures prov	vided in the hydrogen	drostatic

SYSTEM #1

	Date:	10/14/2011
OPERATIONAL NOTES		
GA5 Air Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded	X	No
,	High (orange) _ No _ No	X
5) Oil filter changed Yes 6) Air filter Changed Yes 7) Oil separator changed Yes	_	X X X
8) Terminal strips checked Yes X	No_	
AS-80 O ₂ Generator		
1) Prefilter changed Yes 2) Coalescing changed Yes Yes	No_ No_	X X
GENERAL SYSTEM NOTES		
1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X 2) Abnormal conditions observed (e.g. vandalism	No_	
3) Other major activities completed		
4) Supplies needed		
5) Visitors John C. from URS on-site.		
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: Repaired air leaks at two flow meters in manifolds. Adjusted and tightened belts on the booster pump. Additional conditions are considered as a successful conditions.	ljusted air flow t	to oil/water seperator bowls and
soaked up oil in seperator unit.	J	r
Cleaned up all garbage, weeds, leaves & tree branches from around fence areas. High pressure was observ	ed at monitoring	g point MP-1-2D.
Electric Meter # 96-934-323 tied into Pole #4		
Action Items:		

SYSTEM #2

	ate:		-								
	me:		230	_							
	ather:		inny	_							
	emperature:		2° F	_							
	r Temperature:		0° F	_							
Perfori	med By:	Mike	e Ryan	_							
	O ₂ Ger	nerator (Ai	rSep)				Compr	essor (Kaesar F	Rotary Scr	·ew)	
Hours			8,545	_	Compres	sor Tank '	k		95		(psi)
Feed Air Pressi	ure *		90	(psi)	(readings below are made from					ol panel)	
			_	Delivery	Air			97		(psi)	
Cycle Pressure	Cycle Pressure * 60				Element	Outlet Tei	nperature		169		(°F)
				_(psi)			•				(-)
Oxygen Receiv	er Pressure *			125	Running	Hours			8,652		(hours)
onygen recerv	0111055410			(psi)	Loading				8,575		(hours)
				(psi)	Loading	riours			0,575		(Hours)
0 7			0.6.7								
Oxygen Purity		-1-	96.7	_(percent)	*:		.i 1 Ji	1-			
* maximum readin	g during loading cy	cie		O Inio	ection Syst		ring loading	cycle			
	Injection Ba	l. A		U ₂ Hije	<u> </u>				T!4!	Darels C	
ID	Depth	scfh	ngi	ID	Injection Barbarate Depth	scfh	nai	ID	Injection	scfh	ngi
10	Deptil	SCIII	psi		Deptii	SCIII	psi	10	Depth	SCIII	psi
OW-2-2	90.2'	40	31	OW-2-9S	75'	15	20	OW-2-10D	97.2'	30	27
										~~~~~~~~~	
OW-2-3	94.3'	45	27	OW-2-10S	75'	25	29	OW-2-11D	100.8'	40	32
OW-2-4	94.7'	20	33	OW-2-11S	76.5'	20	22	OW-2-12	94'	27	21
				-							
OW-2-5	95.3'	28	31	OW-2-13S	75'	30	16	OW-2-13D	97'	20	38
OW-2-6		20	31	OW-2-15S	75'	OFF	OFF	OW-2-14	96.4'	30	23
	95 7'				7.5	011	OII	011 2 11	70.1	50	23
011 2 0	95.7'	28	31								
	•				75.51	OEE	OEE	OW 2 15D	04.6'	OEE	OEE
OW-2-7	95.7' 96'	20	30	OW-2-16S	75.5'	OFF	OFF	OW-2-15D	94.6'	OFF	OFF
OW-2-7	96'	20	30	OW-2-16S							
	•				75.5' 74.5'	OFF	OFF	OW-2-15D	94.6'	OFF OFF	OFF OFF
OW-2-7 OW-2-8	96'	20	30	OW-2-16S OW-2-18S	74.5'	15	19	OW-2-16D	94.1'	OFF	OFF
OW-2-7	96'	20	30	OW-2-16S							
OW-2-7 OW-2-8	96' 96.3' 96.7'	20 24 20	30 30 30	OW-2-16S OW-2-18S OW-2-20S	74.5'	15	19	OW-2-16D OW-2-17	94.1'	OFF OFF	OFF OFF
OW-2-7 OW-2-8	96' 96.3' 96.7'	20 24 20 flows were adj	30 30 30 usted to the targ	OW-2-16S OW-2-18S OW-2-20S et flow rate of ~30 s	74.5'	15	19	OW-2-16D OW-2-17	94.1'	OFF OFF	OFF OFF

## SYSTEM #2

				O ₂ Inje	ction Syst						
TD.	Injection B			- TD	Injection Ba			TD.	Injection		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	OFF
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OFF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OFF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	20	28
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	25	27
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	28	27
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	35	28
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	25	32
omments:				get flow rate of ~30 sing readings. Injecti				g was no greater the	an the pressu	res provided in	he hydros
omments:	tables prepared by	URS Corporati		O ₂ Injecti	on banks D &	& E are turno					he hydros
	tables prepared by  Injection B	URS Corporati	on after collect	ong readings. Injecti	on banks D &  ction Syst  Injection Ba	E are turno em #2 nk H	ed off.		Monitoring	Points Log	
ID	Injection Ba	urs Corporati	on after collect	O ₂ Injection	on banks D & ction Syst Injection Ba Depth	em #2 unk H scfh	psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (pp
	tables prepared by  Injection B	URS Corporati	on after collect	ong readings. Injecti	on banks D &  ction Syst  Injection Ba	E are turno em #2 nk H	ed off.		Monitoring	Points Log	PID (pp
ID	Injection Ba	urs Corporati	on after collect	O ₂ Injection	on banks D & ction Syst Injection Ba Depth	em #2 unk H scfh	psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (pp
ID OW-2-37	Injection Base Depth 62.8'	ank G scfh	psi 16	O ₂ Injection of the state of	ction Syst Injection Ba Depth 61.1'	em #2 scfh 30	psi 21	ID MP-2-1	Monitoring DTW 27.05	Points Log DO (mg/L) 9.20	<b>PID</b> ( <b>p</b> p
ID OW-2-37 OW-2-38	Injection Bi Depth 62.8'	ank G sefh 24 34	psi 16	O ₂ Injecting readings. Injecting readings. Injecting of the second of	on banks D & ction Syst Injection Ba Depth 61.1'	em #2 nnk H sefh 30	psi 21 18	MP-2-1 MP-2-2	Monitoring  DTW  27.05  28.16	Points Log DO (mg/L) 9.20 18.30	PID (pp 0
ID OW-2-37 OW-2-38 OW-2-39	Injection B: Depth 62.8' 62.1'	ank G scfh 24 34	psi   16   19   21	O ₂ Injecting readings. Injecting readings. Injecting of the second of	on banks D & ction Syst Injection Ba Depth 61.1'	em #2 nnk H sefh 30	psi 21 18	MP-2-1 MP-2-2 MP-2-3S	Monitoring DTW 27.05 28.16 28.28	Points Log DO (mg/L) 9.20 18.30 25.40	PID (pp
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B:  Depth  62.8'  60'  61.7'	24 34 15 25	psi 16 19 21	O ₂ Injecting readings. Injecting readings. Injecting of the second of	on banks D & ction Syst Injection Ba Depth 61.1'	em #2 nnk H sefh 30	psi 21 18	MP-2-1 MP-2-2 MP-2-3S MP-2-3D	Monitoring DTW 27.05 28.16 28.28 28.47	Points Log DO (mg/L) 9.20 18.30 25.40 32.62	0 0 0
OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection Base   Depth	ank G    scfh   24   34   15   25   20	psi 16 19 21 18	O ₂ Injecting readings. Injecting readings. Injecting of the second of	on banks D & ction Syst Injection Ba Depth 61.1'	em #2 nnk H sefh 30	psi 21 18	MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	Monitoring DTW  27.05  28.16  28.28  28.47  17.01	Points Log DO (mg/L)  9.20  18.30  25.40  32.62  16.70	PID (pr 0 0

## SYSTEM #2

	Date: 12/22/2011
	OPERATIONAL NOTES
GA5 Air Co	
	1) Oil Level Checked with system unloaded*  Yes X No No
	* Unload system, wait until Delivery Air Pressure is less than 9 psi
	2) Oil Level with system unloaded
	Low (red) Normal (green) X High (orange)
	3) Oil added Yes X No
	4) Oil changed         Yes         No X           5) Oil filter changed         Yes         No X           6) Air filter Changed         Yes         No X
	5) Oil filter changed Yes No X
	6) Air filter Changed Yes No X
	7) Oil separator cleaned Yes No X 8) Terminal strips checked Yes X
	8) Terminal strips checked Yes X
AS-80 O ₂ G	Generator
<u> </u>	
	1) Prefilter changed Yes No X 2) Coalescing changed Yes No X
	GENERAL SYSTEM NOTES
<u>Crailer</u>	1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.)  Yes X  No  No  2) Abnormal conditions observed (e.g. vandalism
	3) Other major activities completed
	4) Supplies needed
	5) Visitors
	ntine activities such as any alarm/shutdowns, sampling, maintenance, material
ransported	d off-site, oil/filter/gasket and/or any other abnormal operating conditions:
	ressure switch on booster pump to ensure unit is turning on at 80 PSI. Cleaned fresh air intake filter on air compressor and added a small amount mpressor. Soaked up oil from seperator unit in shed. Wiped down all equipment and cleaned up all garbage, weeds & leaves from around features.
	eter # 96-929-544 tied into Pole #3
Action Item	ns:

## SYSTEM #2

	ate:		/2011	_	-						
	me:		240	_							
	ather:		inny	_							
	emperature:		1° F	_							
	r Temperature:		0° F	_							
Perion	med By:	IVIIK	e Ryan	_							
	O ₂ Ger	nerator (Air	:Sep)				Compr	essor (Kaesar F	Rotary Scr	ew)	
Hours			8,297	_	Compress	sor Tank [*]	k		110		(psi)
Feed Air Pressi	ure *		70	(psi)	(readings below are made from					ol panel)	
					Delivery	Air			114		(psi)
Cycle Pressure	Cycle Pressure * 60				Element	Outlet Ter	nperature		131		(°F)
	(psi)			•				( )			
Oxygen Receiv	er Pressure *		110	Running	Hours			8,398		(hours)	
, 8			(psi)	Loading				8,325		(hours)	
				(psi)	Louding	ilouis			0,323		(Hours)
D '			05.0								
Oxygen Purity	g during loading cy	ala	95.9	(percent)	*	, mandina duy	ring loading	avala			
· maximum readin	ig during loading cy	cie		O Inic	ection Syst	U	ing loading	cycle			
	Injection Ba	unle A			Injection Ba				Injection	Pouls C	
ID	Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	psi
<u> </u>	Берш	SCIII	psi		Deptii	SCIII	psi	10	Бериі	SCIII	psi
OW-2-2	90.2'	40	31	OW-2-9S	75'	20	20	OW-2-10D	97.2'	35	28
***************************************								··•	***************************************		
OW-2-3	94.3'	60	27	OW-2-10S	75'	22	29	OW-2-11D	100.8'	30	32
OW-2-4	94.7'	30	28	OW-2-11S	76.5'	15	23	OW-2-12	94'	32	21
OW-2-5	95.3'	30	30	OW-2-13S	75'	30	20	OW-2-13D	97'	50	28
OW-2-6		30	31	OW-2-15S	75'	OFF	OFF	OW-2-14	96 4'	40	29
OW-2-6	95.7'	30	31	OW-2-15S	75'	OFF	OFF	OW-2-14	96.4'	40	29
***************************************	95.7'			•			••••••••••••••••••••••••		***************************************		
OW-2-6 OW-2-7		30	31	OW-2-15S OW-2-16S	75' 75.5'	OFF OFF	OFF OFF	OW-2-14	96.4' 94.6'	40 OFF	29 OFF
OW-2-7	95.7' 96'	30	30	OW-2-16S	75.5'	OFF	OFF	OW-2-15D	94.6'	OFF	OFF
***************************************	95.7'			•			••••••••••••••••••••••••		***************************************		
OW-2-7 OW-2-8	95.7' 96' 96.3'	30 25	30	OW-2-16S OW-2-18S	75.5'	OFF	OFF 20	OW-2-15D	94.6'	OFF OFF	OFF OFF
OW-2-7	95.7' 96'	30	30	OW-2-16S	75.5'	OFF	OFF	OW-2-15D	94.6'	OFF	OFF
OW-2-7 OW-2-8	95.7' 96' 96.3' 96.7'	30 25 20	30 30 30	OW-2-16S OW-2-18S OW-2-20S	75.5' 74.5'	OFF 15 20	OFF 20 24	OW-2-15D OW-2-16D OW-2-17	94.6' 94.1' 95'	OFF OFF	OFF OFF
OW-2-7 OW-2-8	95.7' 96' 96.3' 96.7'	30 25 20 flows were adji	30 30 30 usted to the targ	OW-2-16S  OW-2-18S  OW-2-20S  et flow rate of ~30 s	75.5' 74.5'	OFF 15 20	OFF 20 24	OW-2-15D OW-2-16D OW-2-17	94.6' 94.1' 95'	OFF OFF	OFF OFF

## SYSTEM #2

								Date:		12/8/2011	
				O ₂ Inje	ction Syst	em #2					
	Injection Ba	ınk D			Injection Ba				Injection	ı Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	OFF
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OFF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OFF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	25	27
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	28	28
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	40	31
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	40	36
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	30	28
Comments:				et flow rate of ~30 s ng readings. Injection				g was no greater tha	an the pressu	res provided in	the hydrostatic
					ction Syst						
	Injection Ba				Injection Ba					Points Log	DED (
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	DO (mg/L)	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	26.97	10.07	0
OW-2-38	62.1'	30	20	OW-2-46	61'	27	20	MP-2-2	28.09	25.85	0
OW-2-39	60'	30	19	OW-2-47	60.5'	30	20	MP-2-3S	28.27	10.90	0.1
OW-2-40	61.7'	20	20					MP-2-3D	28.35	15.25	0.5
OW-2-41	61.7'	30	20					MP-2-4	16.87	9.31	0
OW-2-42	61.6'	40	20	AND				MP-2-5	15.06	10.45	0
OW-2-43	61.4'	30	21								
OW-2-44R	60.6'	30	20								
Comments:	All injection point tables prepared by			et flow rate of ~30 s	cfh provided	that the pre	ssure reading	g was no greater tha	an the pressu	res provided in	the hydrostatic

## SYSTEM #2

			Date:	12/8/2011
	OPERATIONAL NOTES			
GA5 Air Compressor				
Oil Level Checked with system unloaded	d*	Yes	X	No
* Unload system, wait until Delivery Air	r Pressure is less than 9 psi			_
2) Oil Level with system unloaded				
Low (red)	Normal (green)	X Hig	gh (orange)	
3) Oil added	Yes		No	X
4) Oil changed	Yes			X
5) Oil filter changed	Yes		No	X
6) Air filter Changed	Yes		No	X
7) Oil separator cleaned	Yes		No	X
8) Terminal strips checked	Yes Yes X		No	<u></u>
AS-80 O ₂ Generator				
1) Prefilter changed	Vas		No	Y
2) Coalescing changed	Yes Yes		No	X
2) Coalescing changed	1 es		NO	<u> </u>
	GENERAL SYSTEM NOTES	S		
<u>Frailer</u>				
1) Performed general housekeeping (i.e. sw		c.)		
	Yes X		No	
2) Abnormal conditions observed (e.g. van	dalism			
3) Other major activities completed				
4) Supplies needed				
5) Visitors				
Record routine activities such as any alarm/shutdown		ial		
transported off-site, oil/filter/gasket and/or any other	abnormal operating conditions:			
Removed oil from seperator unit in shed and changed the	e fresh air filters on the compressor.	. Wiped down	all equipment a	nd cleaned up all garbage, we
& leaves from around fence areas.				
EL M				
Electric Meter # 96-929-544 tied into Pole #3				
Action Items:				
ACHOR TURNS:				

## SYSTEM #2

Ti Wea Outdoor T Inside Traile	ate: me: ather: emperature: r Temperature: med By:	3/2011 239 Rain 51° F 72° F e Ryan	- - - -								
	O ₂ Ger	nerator (Ai	rSep)				Compre	essor (Kaesar I	Rotary Scr	rew)	
Hours	ours <u>8,017</u>					sor Tank *			95		(psi)
Feed Air Press	eed Air Pressure *80(psi)					(r	eadings be	elow are made f	rom contro	ol panel)	
Cycle Pressure	*	Delivery Air							100		(psi) (°F)
Oxygen Receiv	ver Pressure *			125 (psi)	Running Loading				8,112 8,043		(hours)
Oxygen Purity * maximum readin	ng during loading cy	cle	96.7	_(percent)			ring loading	cycle			
	Injection Ba	ank A		O ₂ Inje	ection Syst Injection Ba				Injection	Ronk C	
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-2	90.2'	40	31	OW-2-9S	75'	18	21	OW-2-10D	97.2'	50	28
OW-2-3	94.3'	40	32	OW-2-10S	75'	20	29	OW-2-11D	100.8'	28	33
OW-2-4	94.7'	30	32	OW-2-11S	76.5'	18	22	OW-2-12	94'	25	23
OW-2-5	95.3'	20	31	OW-2-13S	75'	15	20	OW-2-13D	97'	40	29
OW-2-6	95.7'	25	31	OW-2-15S	75'	30	21	OW-2-14	96.4'	30	30
OW-2-7	96'	30	30	OW-2-16S	75.5'	30	20	OW-2-15D	94.6'	40	29
OW-2-8	96.3'	20	30	OW-2-18S	74.5'	15	20	OW-2-16D	94.1'	50	28
OW-2-9D	96.7'	25	30	OW-2-20S	79'	20	23	OW-2-17	95'	25	30
Comments:	All injection point tables prepared by			get flow rate of ~30 ing readings.	scfh provided	that the pre	ssure reading	g was no greater tha	an the pressur	res provided in	the hydrostatic

## SYSTEM #2

				O ₂ Inje	ction Syst	em #2					
	Injection Ba	ank D			Injection Ba	ank E			Injection	Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	OF
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	35	28
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	30	27
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	15	29
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	18	29
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	20	30
				et flow rate of ~30 s ng readings. Injecti				g was no greater tha	an the pressu	res provided in t	the hydro
	tables prepared by	URS Corporati		O ₂ Injection	on banks D &	& E are turne					the hydro
omments:	tables prepared by  Injection Ba	URS Corporati	on after collection	ng readings. Injecti O ₂ Inje	on banks D & ction Syst Injection Ba	E are turne em #2 ank H	ed off.		Monitoring	Points Log	
ID	Injection Ba Depth	urs Corporati	on after collection	O ₂ Inje	ction Syst Injection Ba Depth	E are turne em #2 ank H scfh	psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
omments:	tables prepared by  Injection Ba	URS Corporati	on after collection	ng readings. Injecti O ₂ Inje	on banks D & ction Syst Injection Ba	E are turne em #2 ank H	ed off.		Monitoring	Points Log	
ID	Injection Ba Depth	urs Corporati	on after collection	O ₂ Inje	ction Syst Injection Ba Depth	E are turne em #2 ank H scfh	psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
ID OW-2-37	Injection Ba Depth 62.8'	ank G scfh	psi 20	O ₂ Injection O ₂ Injection O ₂ Injection O ₃ Injection ID OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 ank H scfh 28	psi 21	ID MP-2-1	Monitoring DTW 26.87	Points Log DO (mg/L) 8.05	PID (p
OW-2-37  OW-2-38	Injection Ba Depth 62.8'	ank G scfh 25	psi 20 21	O2 Injection O2 In	ction Syst Injection Ba Depth 61.1'	em #2 nnk H scfh 28	psi 21 19	MP-2-1 MP-2-2	Monitoring  DTW  26.87  28.00	Points Log  DO (mg/L)  8.05	PID (p
OW-2-37 OW-2-38 OW-2-39	Injection Ba Depth 62.8' 62.1'	ank G scfh 25 28	psi 20 21 19	O2 Injection O2 In	ction Syst Injection Ba Depth 61.1'	em #2 nnk H scfh 28	psi 21 19	MP-2-1 MP-2-2 MP-2-3S	Monitoring DTW 26.87 28.00 28.07	Points Log DO (mg/L)  8.05  11.78  0.84	0 0
OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection Ba Depth 62.8' 62.1' 60' 61.7'	25 28 30 40	psi 20 21 19 21	O2 Injection O2 In	ction Syst Injection Ba Depth 61.1'	em #2 nnk H scfh 28	psi 21 19	MP-2-1 MP-2-2 MP-2-3S MP-2-3D	Monitoring DTW 26.87 28.00 28.07 28.25	Points Log DO (mg/L) 8.05 11.78 0.84 12.58	0 0
OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection Ba Depth 62.8' 62.1' 60' 61.7'	25 28 30 40 20	psi 20 21 19 21 20	O2 Injection O2 In	ction Syst Injection Ba Depth 61.1'	em #2 nnk H scfh 28	psi 21 19	MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	Monitoring DTW  26.87  28.00  28.07  28.25  16.81	Points Log DO (mg/L)  8.05  11.78  0.84  12.58  14.86	0 0 0 0 0 0 0

## SYSTEM #2

		Date:	11/23/2011
	OPERATIONAL NOTES		
GA5 Air Compressor			
Oil Level Checked with system unloaded*		Yes X	No
* Unload system, wait until Delivery Air Pressu	re is less than 9 psi		
2) Oil Level with system unloaded			
Low (red)	Normal (green)	X High (orange)	
3) Oil added	Yes		X
4) Oil changed	Yes		X
5) Oil filter changed	Yes		X
6) Air filter Changed	Yes		X
7) Oil separator cleaned	Yes	No	X
8) Terminal strips checked	Yes X	No	
AS-80 O ₂ Generator			
1) Prefilter changed	Yes	No	X
2) Coalescing changed	Yes	No	X
CE	NIED AT CSZOPENI NIOPEC		
GE	NERAL SYSTEM NOTES		
<u>Trailer</u>			
1) Performed general housekeeping (i.e. sweep, co	ollect trash inside and out, etc.	)	
	Yes X	No	
2) Abnormal conditions observed (e.g. vandalism			
Other major activities completed			
4) Supplies needed			
5) Visitore			
5) Visitors			
Record routine activities such as any alarm/shutdowns, sam	pling, maintenance, materia	ıl	
transported off-site, oil/filter/gasket and/or any other abnor			
Replaced float control in auto water bowl as unit was not shutting			one flow meter in manifolds.
Wiped down all equipment and cleaned up all garbage, weeds &	k leaves from around fence are	eas.	
Found high massayus at MD 2.4			
Found high pressure at MP-2-4.			
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

## SYSTEM #2

	ate:	11/9	/2011	_								
	ime:		218	<u> </u>								
	ather:		ınny	_								
	Temperature:		8° F	_								
	er Temperature:		2° F	_								
Perfor	med By:	Mik	e Ryan	_								
	O ₂ Ge	nerator (Ai	rSep)		Compressor (Kaesar Rotary Screw)							
Hours			7,749	_	Compres	sor Tank [*]	¢		120	-	(psi)	
Feed Air Press	ure *		110	_(psi)	D 1.		eadings b	elow are made f		ol panel)	<i>(</i> )	
					Delivery				115	-	(psi)	
Cycle Pressure	*		60	_(psi)	Element	Outlet Ter	nperature		169	=	(°F)	
Oxygen Receiv	ver Pressure *			115	Running Hours 7,839 (he						(hours)	
				(psi)	Loading 1	Hours			7,774	-	(hours)	
										-		
Oxygen Purity			96.6	(percent)								
* maximum readii	ng during loading cy	cle					ring loading	cycle				
				O ₂ Inje	ection Syst	em #2						
	Injection B	ank A			Injection Ba	ank B			Injection	Bank C		
ID	Depth		psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi	
	Бери	scfh	Por		_				-			
OW-2-2	90.2'	25	33	OW-2-9S	75'	20	22	OW-2-10D	97.2'	28	28	
							22	OW-2-10D	97.2'	28 28	28	
OW-2-2	90.2'	25	33	OW-2-9S	75'	20						
OW-2-2	90.2'	25	33	OW-2-9S OW-2-10S	75'	20 22	30	OW-2-11D	100.8'	28	33	
OW-2-2 OW-2-3 OW-2-4	90.2' 94.3' 94.7'	25 50 28	33 27 31	OW-2-9S OW-2-10S OW-2-11S	75' 75' 76.5'	20 22 18	30	OW-2-11D	100.8'	28	33	
OW-2-2 OW-2-3 OW-2-4 OW-2-5	90.2' 94.3' 94.7' 95.3'	25 50 28 20	33 27 31 30	OW-2-98 OW-2-108 OW-2-118 OW-2-138	75' 75' 76.5'	20 22 18 25	30 23 22	OW-2-11D OW-2-12 OW-2-13D	100.8' 94' 97'	28 20 35	33 23 34	
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6	90.2' 94.3' 94.7' 95.3' 95.7'	25 50 28 20 24	33 27 31 30 31	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	75' 75' 76.5' 75'	20 22 18 25 22	30 23 22 21	OW-2-11D OW-2-12 OW-2-13D OW-2-14	94' 97' 96.4'	28 20 35 30	33 23 34 27	
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7	90.2' 94.3' 94.7' 95.3' 95.7'	25 50 28 20 24 24	33 27 31 30 31 30	OW-2-98 OW-2-108 OW-2-118 OW-2-138 OW-2-158 OW-2-168	75' 75' 76.5' 75' 75' 75'	20 22 18 25 22 18	30 23 22 21 20	OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	94' 97' 96.4' 94.6'	28 20 35 30 50	33 23 34 27 31	

## SYSTEM #2

Date: 11/9/2011											
				O ₂ Inje	ction Syst	em #2					
	Injection Ba	ınk D			Injection Ba				Injection	Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	OFF
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OFF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OFF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	25	29
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	20	27
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	40	38
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	30	27
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	25	33
Comments:	All injection point tables prepared by			ng readings. Injecti		& E are turn		g was no greater tha	in the pressu	res provided in	the hydrostatic
	Injection Ba				Injection Ba		1			Points Log	<u> </u>
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	DO (mg/L)	PID (ppm)
OW-2-37	62.8'	22	20	OW-2-45	61.1'	30	21	MP-2-1	26.88	5.98	0
OW-2-38	62.1'	18	20	OW-2-46	61'	25	20	MP-2-2	28.00	10.71	0
OW-2-39	60'	20	19	OW-2-47	60.5'	25	20	MP-2-3S	28.12	9.01	0
OW-2-40	61.7'	20	20					MP-2-3D	28.28	11.20	0
OW-2-41	61.7'	30	19					MP-2-4	16.83	7.09	0
OW-2-42	61.6'	30	20					MP-2-5	15.05	9.32	0
OW-2-43	61.4'	25	21								
OW-2-44R	60.6'	20	20								
Comments:	All injection point tables prepared by				scfh provided	I that the pre	essure reading	g was no greater tha	n the pressu	res provided in	the hydrostatic

## SYSTEM #2

				Date:	11/9/2011
	OP	ERATIONAL NOTES			
GA5 Air Comp					
1)	Oil Level Checked with system unloaded*		Yes	<u> </u>	No
	* Unload system, wait until Delivery Air Pressure	is less than 9 psi	·		
2)	Oil Level with system unloaded				
	Low (red)	Normal (green)	X High (c	range)	
3)	Oil added	Yes		No X	
	Oil changed	Yes		No_X	
5)	Oil filter changed	Yes		No X	
6)	Air filter Changed	Yes		No X	
7)	Oil separator cleaned	Yes		No X	
8)	Terminal strips checked	Yes		No X	
AS-80 O ₂ Gene	erator				
1)	Prefilter changed	Yes		No X	
	Coalescing changed	Yes Yes		No X	
	CENI	ERAL SYSTEM NOTES			
	GEN	ERAL SISTEM NOTES			
<u>Trailer</u>					
1)	Performed general housekeeping (i.e. sweep, colle	ect trash inside and out, etc.)			
		Yes X		No	
2)	Abnormal conditions observed (e.g. vandalism	-			
2)					
3)	Other major activities completed				
4)	Supplies needed				
ŕ					
5)	Visitors				
Record routin	e activities such as any alarm/shutdowns, sampli	ina maintananca matarial			
	f-site, oil/filter/gasket and/or any other abnorma				
transported of	is site, on/inter/gasket and/or any other abnorme	ii operating conditions.			
Repaired air les	aks at two flow meters in manifolds. Shut down AG	Cunit and turned on heat at a	low setting W	ined down all	equipment and cleaned up al
	s & leaves from around fence areas.		i io ii bettiiig.	-pea ao miran	equipment and escance up a
Electric Meter	# 96-929-544 tied into Pole #3				
A .4* T4					
Action Items:					

## SYSTEM #2

Ti Wea Outdoor T Inside Traile	ate: me: ather: 'emperature: r Temperature: med By:	6/2011 2223 Rain 64° F 10° F e Ryan	- - - -									
	O ₂ Ge	nerator (Ai	rSep)		Compressor (Kaesar Rotary Screw)							
Hours			7,473	_	Compress	sor Tank [*]	k		80		(psi)	
Feed Air Press	ure *		75	_(psi)		(r	eadings be	elow are made f	rom contro	ol panel)		
Cycle Pressure * 60 (psi) Delivery A									90		(psi)	
Cycle Pressure	*		60	_(psi)	Element	Outlet Ter	nperature		171		(°F)	
Oxygen Receiv	ver Pressure *			125	Running Hours 7,560						(hours)	
				(psi)	Loading 1	Hours			7,496		(hours)	
Oxygen Purity * maximum readin	ng during loading cy	rcle	97.5	_(percent)	* maximum	<u> </u>	ring loading	cycle				
	Injection B	ank A		2 0	Injection Ba				Injection	Bank C		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi	
OW-2-2	90.2'	28	27	OW-2-9S	75'	29	22	OW-2-10D	97.2'	17	28	
OW-2-3	94.3'	38	27	OW-2-10S	75'	24	27	OW-2-11D	100.8'	28	33	
OW-2-4	94.7'	32	32	OW-2-11S	76.5'	20	23	OW-2-12	94'	29	22	
OW-2-5	95.3'	25	30	OW-2-13S	75'	20	20	OW-2-13D	97'	48	27	
OW-2-6	95.7'	28	31	OW-2-15S	75'	20	17	OW-2-14	96.4'	35	28	
OW-2-7	96'	28	29	OW-2-16S	75.5'	18	20	OW-2-15D	94.6'	40	27	
OW-2-8	96.3'	25	30	OW-2-18S	74.5'	18	20	OW-2-16D	94.1'	60	30	
OW-2-9D	96.7'	28	30	OW-2-20S	79'	15	23	OW-2-17	95'	20	29	

## SYSTEM #2

								Date		10/26/201	1
				O ₂ Inje	ction Syst	em #2					
	Injection Ba	nk D			Injection Ba				Injection	n Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	OFF
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OFF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OFF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	25	28
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	25	27
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	40	34
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	30	32
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	29	35
Comments:				et flow rate of ~30 s ng readings. Injection				g was no greater tha	nn the pressu	res provided in	the hydrostatic
					ction Syst						
	Injection Ba				Injection Ba					Points Log	DED (
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	DO (mg/L)	PID (ppm)
OW-2-37	62.8'	25	20	OW-2-45	61.1'	28	21	MP-2-1	26.98	7.78	0.5
OW-2-38	62.1'	20	18	OW-2-46	61'	27	20	MP-2-2	28.07	9.89	0
OW-2-39	60'	25	18	OW-2-47	60.5'	25	20	MP-2-3S	28.19	11.79	1.2
OW-2-40	61.7'	20	20					MP-2-3D	28.39	26.31	0
OW-2-41	61.7'	25	20					MP-2-4	16.94	7.79	0
OW-2-42	61.6'	33	20	AND				MP-2-5	15.14	12.02	0
OW-2-43	61.4'	22	20								
OW-2-44R	60.6'	25	20								
Comments:	All injection point tables prepared by			et flow rate of ~30 s	cfh provided	that the pre	ssure reading	g was no greater that	an the pressu	res provided in	the hydrostatic

## SYSTEM #2

	Date: 10/26/2011
OPERATIONAL NOT	res
GA5 Air Compressor  1) Oil Level Checked with system unloaded*  * Unload system, wait until Delivery Air Pressure is less than 9 psi  2) Oil Level with system unloaded	Yes No
Low (red)   X   Normal (gree:	High (orange)
AS-80 O ₂ Generator	
1) Prefilter changed Yes X 2) Coalescing changed Yes X	No No
GENERAL SYSTEM NO	OTES
1) Performed general housekeeping (i.e. sweep, collect trash inside and or Yes X  2) Abnormal conditions observed (e.g. vandalism  3) Other major activities completed	No
4) Supplies needed	
5) Visitors	
Record routine activities such as any alarm/shutdowns, sampling, maintenance, m transported off-site, oil/filter/gasket and/or any other abnormal operating condition	
Performed 12-month O&M on 10-26-11 and between 10-31-11 and 11-1-11.	
Repaired air leaks at three flow meters in manifolds. Adjusted fan blade in air dryer un drain lines. Changed out all filters, screens and belts on all units. Greased booster pun Wiped down all equipment, washed floor of shed and cleaned up all garbage, weeds, le	mp shaft. Repaired leaking cooling oil site glass in compressor.
Electric Meter # 96-929-544 tied into Pole #3	
Action Items:	

## SYSTEM #2

Ti Wea Outdoor T Inside Traile	ate: me: ather: emperature: r Temperature: med By:	1 R ~7	3/2011 147 Rain 71° F 70° F e Ryan	- - - -									
	O ₂ Ge	nerator (Ai	rSep)		Compressor (Kaesar Rotary Screw)								
Hours			7,187	_	Compres	sor Tank *	•		71		(psi)		
Feed Air Pressu	ure *		75	_(psi)		(r	eadings be	elow are made f	rom contro	ol panel)			
		Delivery				79		(psi)					
Cycle Pressure	*		60	_(psi)	Element	Outlet Ter	nperature		169		(°F)		
Oxygen Receiv	er Pressure *			90 (psi)	Running Loading				7,271		(hours)		
Oxygen Purity * maximum readin	g during loading cy	cle	94.9	(percent)	* maximum		ing loading o	cycle					
	Injection Ba	ank A		2 3	Injection Ba				Injection	Bank C			
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi		
OW-2-2	90.2'	20	33	OW-2-9S	75'	30	21	OW-2-10D	97.2'	31	28		
OW-2-3	94.3'	26	30	OW-2-10S	75'	25	30	OW-2-11D	100.8'	30	32		
OW-2-4	94.7'	27	35	OW-2-11S	76.5'	20	21	OW-2-12	94'	28	20		
OW-2-5	95.3'	30	31	OW-2-13S	75'	21	18	OW-2-13D	97'	42	28		
OW-2-6	95.7'	27	30	OW-2-15S	75'	30	20	OW-2-14	96.4'	35	28		
OW-2-7	96'	27	30	OW-2-16S	75.5'	20	20	OW-2-15D	94.6'	40	31		
OW-2-8	96.3'	26	30	OW-2-18S	74.5'	20	20	OW-2-16D	94.1'	50	37		
OW-2-9D	96.7'	25	30	OW-2-20S	79'	18	22	OW-2-17	95'	30	29		
	·	·		<u> </u>	·	·		·	·	·	·		

## SYSTEM #2

	Injection Ba	nk D			ction Syst				Injection	Ponk F	
ID Depth scfh psi			ID	Depth	scfh	psi	ID	Injection Bank F  Depth scfh			
OW-2-18D	95.5'	OFF	OFF	OW-2-22S	76'	OFF	OFF	OW-2-26D	95'	OFF	<b>psi</b> OFI
OW-2-19	96.1'	OFF	OFF	OW-2-24S	77.8'	OFF	OFF	OW-2-27	93.5'	OFF	OF
OW-2-20D	96.6'	OFF	OFF	OW-2-26S	74'	OFF	OFF	OW-2-28D	92.1'	OFF	OF
OW-2-21	96.6'	OFF	OFF	OW-2-28S	76'	OFF	OFF	OW-2-29	92.2'	28	28
OW-2-22D	96.3'	OFF	OFF	OW-2-30S	67.8'	OFF	OFF	OW-2-30D	88'	28	27
OW-2-23	97.2'	OFF	OFF	OW-2-34	71'	OFF	OFF	OW-2-31	86'	39	26
OW-2-24D	97'	OFF	OFF	OW-2-35	69.2'	OFF	OFF	OW-2-32	84'	35	30
OW-2-25	96'	OFF	OFF	OW-2-36	64.8'	OFF	OFF	OW-2-33	82'	30	36
				et flow rate of ~30 s ng readings. Injecti	on banks D &	& E are turne		g was no greater th	an the pressu	res provided in	the hydro
		URS Corporati		ng readings. Injecti		& E are turne		g was no greater the		•	the hydro
	tables prepared by	URS Corporati		ng readings. Injecti	on banks D &	& E are turne		g was no greater the	Monitoring	•	PID (p
omments:	tables prepared by  Injection Ba	URS Corporati	on after collecti	ng readings. Injecti O ₂ Inje	on banks D &  ction Syst  Injection Ba	E are turno em #2 ank H	ed off.		Monitoring	Points Log	PID (p
ID	Injection Ba	urk G sefh	on after collecti	O ₂ Injection	ction Syst Injection Ba Depth	E are turne em #2 ank H scfh	psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
ID OW-2-37	Injection Bar Depth 62.8'	ank G scfh	psi 20	O ₂ Inje  ID  OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 ank H scfh 28	psi 21	ID MP-2-1	Monitoring DTW 26.79	Points Log DO (mg/L) 14.13	PID (p 31.
ID  OW-2-37  OW-2-38	Injection Ba Depth 62.8'	urk G sefh 25	psi 20	O ₂ Injection O ₂ Injection O ₃ Injection O ₄ Injection ID OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 mk H scfh 28	psi 21 20	MP-2-1 MP-2-2	Monitoring  DTW  26.79  27.92	Points Log DO (mg/L) 14.13 16.35	PID (p 31. 3.2
OW-2-37 OW-2-38 OW-2-39	Injection Ba Depth  62.8'  62.1'	ank G scfh 25 20 33	psi 20 19	O ₂ Injection O ₂ Injection O ₃ Injection O ₄ Injection ID OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 mk H scfh 28	psi 21 20	MP-2-1 MP-2-2 MP-2-3S	Monitoring DTW 26.79 27.92 28.01	Points Log DO (mg/L)  14.13  16.35  7.1	31 3.2 35.5
OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection Ba Depth 62.8' 62.1' 60'	25 20 33 20	psi 20 19 20 20	O ₂ Injection O ₂ Injection O ₃ Injection O ₄ Injection ID OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 mk H scfh 28	psi 21 20	MP-2-1 MP-2-2 MP-2-3S MP-2-3D	Monitoring DTW 26.79 27.92 28.01 28.24	Points Log DO (mg/L) 14.13 16.35 7.1 9.18	
OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection Ba Depth  62.8'  62.1'  60'  61.7'	25 20 33 20 25	psi 20 19 20 20	O ₂ Injection O ₂ Injection O ₃ Injection O ₄ Injection ID OW-2-45	ction Syst Injection Ba Depth 61.1'	em #2 mk H scfh 28	psi 21 20	MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	Monitoring DTW  26.79  27.92  28.01  28.24  16.79	Points Log DO (mg/L)  14.13  16.35  7.1  9.18  23.21	31. 3.2 35.9

## SYSTEM #2

		Date:	10/13/2011
OPERATIONAL NOTES			
GA5 Air Compressor			
1) Oil Level Checked with system unloaded*	Yes	X	No
* Unload system, wait until Delivery Air Pressure is less than 9 psi			
2) Oil Level with system unloaded			
Low (red) X Normal (green)	High	(orange)	
3) Oil added Yes X		No	
4) Oil changed Yes			X
5) Oil filter changed Yes			X
6) Air filter Changed Yes			<u>X</u>
7) Oil separator changed 8) Terminal strips checked Yes X		No	X
8) Terminal strips checked Yes X		No	
AS-80 O ₂ Generator			
<u> </u>		No	X
1) Prefilter changed Yes 2) Coalescing changed Yes			X
2) Couldstring changed			<u> </u>
GENERAL SYSTEM NOTES			
Trailer  1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.)  Yes X	)	No_	
Abnormal conditions observed (e.g. vandalism			
Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdowns, sampling, maintenance, materia transported off-site, oil/filter/gasket and/or any other abnormal operating conditions:	al		
Cleaned up all garbage, rocks & sticks from areas around shed that appear to be being thrown	n at AC unit.		
Added a small amount of oil to units. Adjusted belts and pressure switches as needed. Repair	ired air leak in l	ine to auto dra	in.
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			